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Abstract

Motivation: Recent efforts to manipulate various microbial communities, such as fecal microbiota

transplant and bioreactor systems’ optimization, suggest a promising route for microbial commu-

nity engineering with numerous medical, environmental and industrial applications. However,

such applications are currently restricted in scale and often rely on mimicking or enhancing natural

communities, calling for the development of tools for designing synthetic communities with spe-

cific, tailored, desired metabolic capacities.

Results: Here, we present a first step toward this goal, introducing a novel algorithm for identifying

minimal sets of microbial species that collectively provide the enzymatic capacity required to syn-

thesize a set of desired target product metabolites from a predefined set of available substrates.

Our method integrates a graph theoretic representation of network flow with the set cover problem

in an integer linear programming (ILP) framework to simultaneously identify possible metabolic

paths from substrates to products while minimizing the number of species required to catalyze

these metabolic reactions. We apply our algorithm to successfully identify minimal communities

both in a set of simple toy problems and in more complex, realistic settings, and to investigate

metabolic capacities in the gut microbiome. Our framework adds to the growing toolset for sup-

porting informed microbial community engineering and for ultimately realizing the full potential of

such engineering efforts.

Availability and implementation: The algorithm source code, compilation, usage instructions

and examples are available under a non-commercial research use only license at https://github.

com/borenstein-lab/CoMiDA.

Contact: elbo@uw.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Complex microbial communities can be found everywhere on our

planet, spanning marine communities inhabiting the deep ocean to

symbiotic communities living on and within host organisms. These

communities impact a broad set of processes ranging from environ-

mental resource cycles to host organism health. For example, deep

sea rock and vent communities play a fundamental role in oxidizing

environmental methane (Marlow et al., 2014), whereas the human

gut microbiome crucially aids in drug metabolism, energy harvest

and immune system response (Sekirov et al., 2010). Microbial com-

munities affect these processes through a variety of metabolic reac-

tions catalyzed by enzymes encoded in the member species’

genomes, and ultimately through the diverse compounds each com-

munity can degrade or produce.

These critical roles microbial communities play in shaping their

environment, combined with the potential to manipulate these com-

munities, suggest a promising route for numerous medical and envir-

onmental applications (Brenner et al., 2008). Specifically, several
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such efforts to shift target communities toward preferred states have

used samples from naturally occurring communities as an inocula-

tion source. For instance, transplanting healthy donor microbiome

samples into patient guts has recently been used to treat a variety of

gut disorders (Aroniadis and Brandt, 2013). Such fecal microbiota

transplants (FMTs) have been shown to perturb a patient’s dysbiotic

gut community, shifting it to a healthier state and ameliorating their

condition (Hamilton et al., 2013; Song et al., 2013). These FMT-

based therapies have had a>90% success rate at curing recurrent

Clostridium difficile infections and have promising results for ad-

dressing other gut disorders including inflammatory bowel disease

and metabolic syndrome (Rossen et al., 2015). Similarly, wastewater

treatment bioreactors are often seeded by microbial communities

cultivated from naturally occurring wastewater microbes or from

previously established bioreactors (Alleman and Prakasam, 1983).

These seed communities colonize the new bioreactor and thereby

provide the metabolic processes necessary to degrade biological mat-

ter in wastewater.

Following the success of such transplants, recent efforts have fur-

ther aimed to use engineered, rather than naturally occurring, com-

munities in an attempt to increase control over transplant outcomes.

For example, a synthetic stool substitute was recently developed

using a mixture of cultured bacterial isolates to mimic a healthy gut

community (Petrof et al., 2013). Such a synthetic community re-

moves the need for sample donors, allows greater regulation over

the bacteria present in the transplant community, and reduces the

risk for inadvertent transfer of pathogens. This synthetic and mark-

edly simpler community was shown to still be effective in treating

C. difficile infections. Another effort applied a simple selection-

based approach to optimize the species composition of a bioreactor

seed community for increased biopolymer production from glycerol

(Moralejo-G�arate et al., 2011). The final community’s biopolymer

production rate was demonstrated to be noticeably increased com-

pared to the original community.

Such community engineering approaches are clearly an import-

ant first step towards customizing microbial community compos-

ition, yet they still largely rely on imitating natural community

structures or enhancing existing community capabilities and cannot,

for example, produce communities with potentially desired abilities

absent from the initial community. Indeed, even optimizing an exist-

ing community function involves developing a carefully controlled

selection procedure tailored to the preferred function and may re-

quire a long time for the community to reach an optimal state. The

applications of such engineering efforts are therefore inherently con-

strained and are often very system-specific and hard to generalize.

One approach to address these challenges is to rationally design

and construct synthetic communities with desired and predefined

metabolic capabilities. Such a design process would involve the care-

ful selection of member species and their abundances, hopefully

defining a community composition that would achieve the desired

metabolic task in the target environment. The ability to design such

communities would significantly broaden the applicability of com-

munity engineering, could alleviate the reliance on naturally occur-

ring community functions, and would ultimately support the

construction of communities tailored to perform specific tasks

within the context of various environmental settings.

Designing microbial communities, however, is a daunting task.

Microbial species are endowed with tremendously diverse and com-

plex capacities, which may not be trivial or easy to discern.

Moreover, the various species comprising each community do not

function independently, and each community impacts its environ-

ment through the orchestrated activity of its members. Interaction

between species can lead to emergent behaviors that cannot be

attributed to the function of just a single species or to additive spe-

cies functions (Pelz et al., 1999; Pettit, 2009). One species can, for

example, provide the necessary precursors that allow a second spe-

cies to produce metabolites that it could not produce when growing

in isolation (Chiu et al., 2014). Similarly, costly metabolic tasks

could be distributed among community members such that each

member performs a specific part of a complex metabolic pathway

(Moran, 2007). A successful design framework should therefore ac-

count for such interactions and their impact on the metabolism of

the community as a whole.

As a first step to address this challenge, here we develop

CoMiDA (Community Metabolism Design Algorithm), an algo-

rithmic framework for designing simple communities with some

predefined metabolic capacities. Specifically, we aim to identify a

set of species that, as a community, have the metabolic potential to

convert a set of metabolic substrates to a set of desired target me-

tabolites. We further aim to discern the smallest set of species

required to provide this desired metabolic potential, reducing

downstream complexities and providing more streamlined com-

munities. In other words, our goal is to identify a minimal set of

species whose genomes collectively encode a set of enzymatic genes

that can catalyze a collection of metabolic reactions forming meta-

bolic paths to each desired product metabolite from the available

substrates.

Communities designed with our framework will therefore have

the required metabolic potential to achieve the specified metabolism.

Obviously, there are additional factors and processes that should be

ultimately considered in designing a stable and functional commu-

nity that carries out a specific task. First and foremost, possessing

the set of reactions leading from substrates to products does not ne-

cessarily imply that the community would actively and efficiently

perform the desired metabolic function. Toxin production, signaling

between microbes, the capacity to transport metabolites between

cells, and the ability of the selected species to survive in the target

environment could further affect the community behavior, stability

and dynamics. Yet, having the metabolic potential to carry out the

desired function is an important and essential prerequisite for any

community that could achieve the specified task, and is therefore a

natural first step in rational community design and a critical compo-

nent of any design task (see also Section 4).

2 Methods

2.1 Problem statement and approach
The goal of our design task is, given a set of substrate metabolites

and a set of target product metabolites, to find a minimal subset of

the available species that can collectively synthesize this set of target

products using the available substrates. Specifically, here we view

each microbial species as a simple assemblage of metabolic reac-

tions, corresponding to the set of enzymatic genes encoded in its

genome. Each reaction is represented as a hyperedge, linking the re-

action’s substrates to the reaction’s products. We further initially as-

sume that metabolites can transfer freely between species, a

common simplifying assumption in various community models

(Gordon and Klaenhammer, 2011; Raymond and Segrè, 2006; Song

et al., 2014; Taffs et al., 2009), though we relax this assumption

later. The metabolic potential of each community can accordingly

be viewed as the aggregate set of metabolic reactions of the member

species. A solution to our design task is therefore a minimal set of

species that collectively include some set of metabolic reactions
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sufficient to form valid paths to all target products from available

substrates. This design task is depicted in Figure 1.

To solve the above design problem, we used an integer linear

programming (ILP) formulation. ILP is a framework for defining a

linear expression of variables to maximize/minimize, along with a

set of linear equations and inequalities that constrain those vari-

ables. ILP is a well-established framework, with several efficient

solvers and numerous applications (Wolsey and Nemhauser, 2014).

Below, we introduce an ILP formulation of our design task,

inspired by ILP-based solutions to both the set cover problem and the

network flow problem. To outline the different conceptual parts of

our algorithm, we construct this ILP formulation in multiple steps.

We first assume that all reactions are simple (connecting a single sub-

strate to a single product) and that a set of reactions necessary to form

paths from available substrates to all target products is specified. We

show that, with these assumptions, identifying a minimal set of spe-

cies that collectively encode this required set of reactions can be repre-

sented as a set cover problem and solved using an ILP formulation.

Next, we relax our assumption of specified paths (or a specified set of

reactions), introducing an array of network flow-inspired ILP con-

straints that defines possible paths from available substrates to target

products using terms that can be linked to the set cover formulation.

Finally, we consider the presence of multiple-substrate multiple-prod-

uct reactions and adjust our network flow constraints to account for

such hyperedges in the metabolic network.

2.2 Species, reactions and metabolites in a simple

metabolic network representation
There are three main components to our community design prob-

lem: the set of available species, the metabolic reactions catalyzed by

each species, and the metabolites these reactions consume and pro-

duce. Let M ¼ {m1, m2, . . ., mn} denote the set of possible metabol-

ites where n is the number of metabolites. We additionally define

R¼ {r1, r2, . . ., rp} to be the set of reactions, where p is the number

of reactions. Each reaction can then be defined as an ordered pair of

metabolites, representing the reaction’s substrate and product,

respectively:

rj ¼ ðmj substrate; mj productÞ:

For now assume that each reaction has one substrate metabolite

and one product metabolite. This assumption will be relaxed later.

Similarly, let S¼ {s1, s2, . . ., sq} denote the set of species, where q is

the number of species. Each species, s, in our formulation can be

defined as the set of reactions it can catalyze:

si ¼ fri 1; ri 2; . . . ; ri ag:

We additionally define the set of available substrate metabolites

and set of target product metabolites as:

SUBSTRATE ¼ msubstrate 1; msubstrate 2; . . . ; msubstrate bf g;

PRODUCT ¼ mproduct 1; mproduct 2; . . . ;mproduct c

� �
;

where b is the number of substrates and c is the number of products.

Notably, with these definitions, metabolites and reactions can also be

viewed as a graph or a network, where nodes represent metabolites

and edges represent reactions connecting substrates to products. Notice

also that each species can be associated with some subgraph of this

metabolic graph based on the set of reactions that species can catalyze.

2.3 Finding a minimal set of species with a pre-specified

collection of metabolic capacities
To focus on the minimization aspect of the algorithm, first assume

that there is a specified set of necessary metabolic reactions, N � R,

that provides valid paths from SUBSTRATE to PRODUCT, such as

the set of metabolic reactions in Figure 1 (right). Given this assump-

tion, our aim is to identify a solution set of species that both can col-

lectively catalyze this set of necessary reactions, and is minimal (in

terms of the number of species). Since each species is viewed as some

subset of the possible reactions, this task corresponds to identifying

the minimal set of such subsets whose union contains the specified

set of necessary reactions N. This representation of our task forms

an instance of the well-defined set cover (SC) problem, which can be

solved using an ILP formulation (see also Ye and Doak, 2009).

Specifically, first we define a set of binary ILP species variables

I_S¼ {I_s1, I_ s2, . . ., I_sq} such that each ILP species variable, I_s,

corresponds to a species s:

I si 2 f0; 1g : i 2 f1;2; . . . ; qg;

with I_si¼1 indicating that the ith species is included in the solution spe-

cies set, and I_si¼0 indicating that the ith species is not included. Given

these ILP species variables, the objective function of minimizing the num-

ber of species included in the solution species set can be defined as:

min

Xq

i¼1

I si: (1)

To link the set of species to be included in the solution set to the

sets of reactions each species can catalyze and the set of specified

necessary reactions N, we define an additional set of binary ILP

reaction variables I_R¼ {I_r1, I_r2, . . ., I_rp} such that each ILP re-

action variable, I_r, corresponds to a reaction r:

I rj 2 0;1f g : j 2 1; 2; . . . ; pf g;

with I_rj¼1 indicating that the jth reaction is included in N, and

I_rj¼0 indicating that the jth reaction is not included. Given these

ILP reaction variables, the constraints ensuring that each necessary

reaction can be catalyzed by at least one species can be defined as:

X
8i s:t:
rj 2 si

ðI siÞ � I rj : j 2 f1;2; . . . ; pg: (2)

PRODUCT

Species and 
Reactions

Desired 
Metabolism
SUBSTRATE

PRODUCT

SUBSTRATE

Desired Minimal 
Community

s1

s2

s3

r1 r2 r3

r4 r5 r6

r7 r6 r8

r1 r2 r3

r7 r6 r8

r2

r6

r1

r8

s1

s3

Design

Fig. 1. Schematic representation of the design task. Circles represent metab-

olites, with arrows between metabolites representing metabolic reactions

and ovals representing species. The presence of a reaction within a species

indicates that this species can catalyze that reaction. Given desired products

and available substrates (left) and a set of available species (middle), our al-

gorithm aims to identify a minimal subset of species that can collectively syn-

thesize the desired products from the available substrates (right)
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In other words, these constraints require that if a reaction is ne-

cessary (I_ rj¼1), then there must be at least one species in the solu-

tion species set that catalyzes that reaction. The objective function

(1) and the set of constraints (2) thus fully define an ILP formulation

of the SC component of the algorithm, minimizing the number of

species required to catalyze a known set of necessary metabolic

reactions.

As a brief example of such a formulation, consider the set

of available species in Figure 1 (middle) and the set of reac-

tions in the displayed solution (right). By appropriately assigning

ILP species variables, the objective function for this instance

would be:

minðI s1 þ I s2 þ I s3Þ:

Similarly, when we assign the ILP reaction variables and their

values, we can formulate the set cover constraints associated with

this instance (following the general form of constraint (2)):

I r2 ¼ 1! I s1 � 1

I r6 ¼ 1! I s2 þ I s3 � 1

I r1 ¼ 1! I s1 � 1

I r8 ¼ 1! I s3 � 1:

Together, this specific objective function and these specific con-

straints define ILP problem associated with the task depicted in

Figure 1 assuming the reactions in the presented path are

necessary.

2.4 Considering all possible paths from available

substrates to target products
When defining the SC component of the algorithm above, a set of

necessary metabolic reactions connecting SUBSTRATE to

PRODUCT was assumed to be predefined. Clearly, however, when

considering the complex network of metabolic reactions that can

be catalyzed by microbial species, there are likely numerous alter-

native paths connecting the available substrates to the desired tar-

get products. Since one cannot know a priori which paths require

the fewest species to catalyze, a complete solution to our design

problem must consider all possible paths when minimizing the

number of species. To address this challenge and to remove the as-

sumption of a specified set of necessary reactions, we use network

flow (NF)-inspired constraints. Specifically, instead of predefining

the values of the I_ r variables to denote which reactions are neces-

sary, we allow I_ r values to vary freely and introduce a set of con-

straints that guarantee that the collection of reactions for which

I_ r¼1 form valid paths from SUBSTRATE to PRODUCT.

Intuitively, an NF problem considers a graph as a network of pipes

where the task is to push the maximal flow through these pipes

from a source node to a sink node. Here, we use this NF-based ap-

proach to define a valid path in the metabolic network as a set of

reactions that allow flow to pass from SUBSTRATE to

PRODUCT.

To define such a valid path, first we define a set of ILP flow vari-

ables, F_R¼ {F_r1, F_r2, . . ., F_rp}, where F_rj denotes the amount

of flow passing through the jth reaction. Since flow has to be non-

negative and since real-valued flow variables are unnecessary and

slow computation, we further limit the values for flow variables to

non-negative integers:

F rj 2 N : j 2 1;2; . . . ; pf g:

The first NF constraint requires that only metabolites in

SUBSTRATE can be sources of flow, hence forcing any viable path

to start from an available substrate metabolite (Fig. 2A):

X
8j s:t:

mj 2SUBSTRATE

�
X
8in s:t:

rin¼ mi;mj

� �
Frin
þ
X
8out s:t:

rout¼ mj;mk

� �
Frout

0
BBB@

1
CCCA¼jPRODUCTj;

(3)

where i,j,k 2 {1,2,. . .,n}, i 6¼j, j 6¼k, and in,out 2 {1,2,. . .,p}. In other

words, the sum of flow leaving all available substrate metabolite

nodes must be greater than the sum of flow entering these metabol-

ites. Specifically, we require that the difference in flow be equal to

the number of target product metabolites (jPRODUCTj), ensuring

that each target product can receive one unit of flow if a viable path

exists. Note here that even though we would not usually need flow

to enter a substrate metabolite node, it may be necessary for prob-

lems involving forced substrate usage (see Supplementary Text 1).

The second NF constraint requires that metabolites in

PRODUCT be flow sinks, forcing every viable path to end at a tar-

get product (Fig. 2B):

X
8in s:t:

rin ¼ mi;mj

� �
F rin �

X
8out s:t:

rout ¼ mj;mk

� �
F rout ¼ 1

: 8j s:t: mj 2 PRODUCT:

(4)

This forces the flow into any target metabolite node to be greater

than the flow leaving that node by one unit of flow. Thus, each

product metabolite must be reached by some viable path. It should

be noted that the network flow solution does not necessarily reflect

all metabolic activity and, for example, intermediate reactions’ bi-

products could still be generated even when no flow is associated

with these bi-products.

The third NF constraint asserts that all metabolites not in

SUBSTRATE or PRODUCT have zero net flow (i.e. neither sources

nor sinks of flow), allowing such metabolites to serve as intermedi-

ate nodes in any viable path (Fig. 2C):

X
8in s:t:

rin ¼ mi;mj

� �
F rin ¼

X
8out s:t:

rout ¼ mj;mk

� �
F rout

: 8j s:t: mj 2 R;mj 62 SUBSTRATE;mj 62 PRODUCT:

(5)

Products Consume
Flow

+1 1

1

+

Substrates Provide
Flow

1 1

1

Flow In = Flow Out

+
1

1

1

1

1

1

1

A B C

Fig. 2 The network flow constraints. (A) The net flow out of all available sub-

strates must be equal to the number of target products. (B) The net flow into

any target product must be equal to one. (C) The net flow for any intermediate

metabolite must be zero. Together these constraints define any viable set of

metabolic reactions that form paths from available substrates to target

products
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Given these NF constraints, any viable set of metabolic reactions

for converting SUBSTRATE to PRODUCT will have non-zero asso-

ciated ILP flow variables.

Finally, to appropriately set the I_r reaction variables to 1 if the

reaction is used in the NF task and 0 otherwise, an additional set of

conversion constraints is added:

F rj � jPRODUCTj � I rj : 8j 2 f1; 2; . . . ; pg; (6)

ensuring that if a reaction’s flow variable is greater than 0, then the

ILP reaction variable for that reaction must be 1.

Combining the objective function (1) and the constraints (2)–(6)

for the SC and NF tasks therefore provides a complete ILP formula-

tion for minimizing the number of species in the solution species set

while ensuring the existence of viable paths from available sub-

strates to all target products.

2.5 Allowing for metabolic reactions with multiple

substrates and products
The ILP formulation above relies on the assumption that each meta-

bolic reaction has a single substrate and a single product. This is a

common simplification in metabolic network analysis and various

protocols exist to reconstruct metabolic networks in which this as-

sumption holds (Levy and Borenstein, 2013; Parter et al., 2007).

Yet, a more complete and accurate metabolic network formulation

allows metabolic reactions to have multiple substrates (accounting,

for example, for co-factors) and/or multiple products. To account

for such metabolic reactions, we modify our metabolic network rep-

resentation and instead of connecting substrate nodes to product

nodes directly, we introduce a new type of node, representing reac-

tions, and connect the (potentially multiple) substrates of each reac-

tion to the (potentially multiple) products through the appropriate

reaction node (Fig. 3A). In this representation, reactions, r, are

therefore no longer representing edges in the network, but rather

nodes that connect

mj substrate 1;mj substrate 2; . . . ;mj substrate d

� �

to

mj product 1;mj product 2; . . . ;mj product e

� �
;

where d is the number of substrates and e is the number of products

for the jth reaction. Specifically, we define two new classes of edges:

a set of reaction input edges, I¼ {i1, i2, . . ., it} where t is the number

of substrate metabolites across all reactions, connecting a substrate

metabolite m to a reaction r:

ij ¼ mj input; rj reaction

� �
;

and a set of reaction output edges, O¼ {o1, o2, . . ., ou} where u is

the number of product metabolites across all reactions, similarly

connecting a reaction r to its product metabolite m:

oj ¼ rj reaction;mj output

� �
:

Together, these new nodes and edges thus define a bipartite

graph where edges only exist between one metabolite node and one

reaction node, but never between two metabolites or two reactions

(Fig. 3A).

Now we redefine the set flow variables in this network as two

sets, F_I¼ {F_ i1, F_ i2, . . ., F_ it} and F_O¼ {F_o1, F_o2, . . ., F_ou}

where F_ i and F_o represent flow along input and output edges re-

spectively. Notably, most of the flow constraints defined above are

still valid when applied to both metabolite and reaction nodes; how-

ever, constraint (6), which aimed to link the flow variables to the

ILP reaction variables, I_r, needs to be updated to represent the link

between a reaction’s multiple substrates and products. Specifically,

one set of constraints is introduced to ensure that a reaction can be

active only if all its substrates are present (in other words, if all reac-

tion input edges have flow):

F ij � I rk : 8j;k s:t: ij ¼ ml; rkð Þ: (7)

Then, another set of constraints is introduced to allow active re-

actions to generate products (by providing flow on the reaction out-

put edges):

X
8i s:t:

oi ¼ rj;mk

� �
F oið Þ � jIj þ jOjð Þ � I rj : 8j 2 f1; 2; . . . ;pg: (8)

The only difference between constraints (6) and (8) is that the

maximum flow across a single edge is no longer bounded above by

just the number of target products but instead the number of edges

in the network. This difference is due to the need for all substrates

of a reaction to provide flow instead of just a single substrate, which

may require multiple units of flow to reach a single target product.

Combined, constraints (7) and (8) guarantee that a reaction’s prod-

ucts can be available only if all of the reaction’s substrates are avail-

able, and that if the reaction is required for generating flow the ILP

reaction variable for that reaction must be 1.

2.6 Compartmentalizing species and defining

transport reactions
The algorithm so far has treated the community as a single super-

organism, whereby metabolites can transfer freely between species.

A more realistic scenario, however, assumes that metabolites are

compartmentalized within each species and requires species to have

the necessary transport reactions to allow environmental metabolite

Reactions Require 
All Substrates To

Generate Any Products

Metabolite
Nodes

Metabolite
Nodes

Reaction
Node

Metabolite
Nodes

Metabolite
Nodes

A  B

+1

1

1

1

1

1

Fig. 3. The bipartite graph representation of multi-substrate, multi-product

metabolic reactions and associated flow constraints. (A) Each metabolic reac-

tion is replaced by a new node type representing the enzyme that catalyzes

that reaction. New edges are added to indicate the input and output metabol-

ites for each reaction. (B) The new flow constraints require that all reaction

substrates can provide flow to use a reaction and that reaction output edges

can have flow only if all input edges have flow
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uptake and secretion. Such a compartmentalized problem can in fact

be solved by the algorithm as currently defined simply by modifying

the sets of metabolites and reactions. Specifically, rather than having

a single variable to denote each metabolite (regardless of its com-

partment), a set of variables should be defined to denote the metab-

olite in each compartment in which it exists (be it a specific species

or the shared environment). Given this extended set of metabolite

variables, metabolic reactions are now viewed as operating within a

species (and accordingly connect species-specific substrates to spe-

cies-specific products). An additional set of transport reactions

(which correspond to each species’ uptake and secretion capacities)

can then convert species-specific metabolites to environmental me-

tabolites and vice-versa. In this compartmentalized setting, one spe-

cies can only use metabolites produced by another species if both

species have the appropriate transport reactions. For example, for a

given metabolite m to transfer from species A to species B, species A

must include a transport reaction to convert the A-specific version

of m to an environmental version, and similarly species B must in-

clude a transport reaction to convert the environmental version of m

to a B-specific version.

More formally, we now define M¼ {m0,1, m0,2, . . ., m0,n, m1,1,

. . ., mq,n} as the set of metabolites such that mi,k where i 2 {0,1,. . .,q}

and k 2 {1,2,. . .,n} denotes metabolite k in species i. We interpret

the 0th species as the shared environment. We then replace each re-

action, rj, present in species I in our previous formulation with a

new reaction:

ri;j ¼ mi;j substrate 1;mi;j substrate 2; . . . ;mi;j substrate d

� �
;

�

mi;j product 1;mi;j product 2; . . . ;mi;j product e

� �
Þ:

Each species may also include a set of transport reactions that

convert environmental metabolites to species-specific metabolites

(reflecting uptake reactions):

ri;transport l ¼ m0;k;mi;k

� �
;

or species-specific metabolites to environmental metabolites (repre-

senting secretion):

ri;transport l ¼ mi;k;m0;k

� �
:

Together, these new metabolite and reaction definitions relax

the assumption of freely transferred metabolites and allow our algo-

rithm to solve problems in a compartmentalized species setting.

2.7 Forcing substrate usage and incorporating

species costs
The above ILP-based formulation can be further extended to force

the obtained solution to meet additional requirements or to consider

additional factors. Specifically, we have developed and implemented

algorithm extensions to handle two biologically relevant consider-

ations, the first forcing the solution to utilize (or degrade) specified

substrates, and the second to weigh species’ predefined desirability

when constructing a community. For a detailed description of the

associated constraints and modifications, see Supplementary Text 1.

3 Results

3.1 Algorithm implementation and availability
We implemented the algorithm outlined above as a Cþþprogram

which takes as input a file describing the various parameters of the

design task, including available substrates, target products and the

set of available species with their associated metabolic reactions.

The program then generates the associated ILP instance in the

Mathematical Programming System (MPS) format (default) or the

CPLEX format (depending on the requirements of the ILP solver

used). The source code for the algorithm is available under a non-

commercial research use only license at https://github.com/boren

stein-lab/CoMiDA. To obtain solutions for our test cases and data-

set analysis, we used the COIN-OR Branch and Cut (CBC) solver

(Lougee-Heimer, 2003).

3.2 Unit test validation
We first aimed to verify our algorithm using a set of simple design

problems. Specifically, we generated a suite of toy problems as unit

test cases for our algorithm. These toy problems test whether our al-

gorithm identifies an optimal solution under different scenarios that

cover a variety of edge cases. These test cases focus on simple design

tasks, with up to five species and up to seven associated metabolic

reactions. For example, some cases examined scenarios in which the

minimal species solution requires a longer metabolic path from sub-

strate to product than a non-minimal species solution. Other cases

examined scenarios in which a solution does not exist (e.g. because

no path exists from substrate to product, regardless of which species

are used). We have applied our algorithm to each of these test cases

and confirmed that our algorithm correctly produces the ILP formu-

lation and ultimately identifies an optimal solution for each design

task (or the absence of one). These toy problems, along with their

expected ILP formulations, can be found (with the source code) at

https://github.com/borenstein-lab/CoMiDA, providing users with

simple examples of the expected input/output format and allowing

users to confirm that the algorithm is working properly.

3.3 Glycolysis pathway validation
The toy problems described above are limited in size and may not be

comparable in scale to many real-world scenarios. To examine our

algorithm’s performance on datasets of a more practical size, we

next focused on a well-characterized metabolic pathway, the

Embden-Meyerhof glycolysis pathway (KEGG entry M00001

(Kanehisa et al., 2014; Ogata et al., 1999)), defining glucose and

pyruvate as the available substrate and target product respectively

(Supplementary Fig. S1). For the set of available species, we selected

all 284 species identified from the 2013 Human Microbiome Project

(HMP) (Human Microbiome Project Consortium, 2012a) stool sam-

ple datasets that contained the entire set of metabolic reactions in

the glycolysis pathway as predicted by PICRUSt (Langille et al.,

2013). Combined, this set of species corresponds to an aggregate

metabolic network containing 1803 metabolites and 3120 metabolic

reactions. Since each species in this set can catalyze the entire path-

way from glucose to pyruvate, our algorithm identifies, as expected,

a single species solution (one of the 284 possible choices). To test

our algorithm’s performance when minimal solutions required mul-

tiple species, we next therefore modified the metabolic network of

each species, deleting various reactions and forcing a multi-species

solution. Specifically, we first removed all alternate reaction paths

between glucose and pyruvate by removing the first reaction in each

alternate path that was not also part of the glycolysis pathway

(Supplementary Fig. S1), filtering out 39 reactions and leaving a

total of 3081 metabolic reactions in the aggregate network. We then

removed selected reactions in the glycolysis pathway from subsets of

the available species such that no single species contained all reac-

tions in the path (e.g. by removing one reaction in the pathway from

half of the available species and a different reaction from the other
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half). Through numerous such modifications, we forced minimal

solutions for providing the glycolysis pathway to require multiple

species, fully controlling the size of these minimal solutions. We con-

firmed that our algorithm was able to handle such cases and to pro-

vide a correct minimal solution in each such scenario.

3.4 Analysis of minimal communities of gut

microbiome species
Naturally occurring microbial communities often comprise an ex-

tremely complex and diverse collection of species (Human

Microbiome Project Consortium, 2012b; Lozupone and Knight,

2007). This diversity can be the product of numerous factors,

including a variety of niches species can occupy (Escalante et al.,

2015; Rainey and Travisano, 1998), metabolic specialization of in-

dividual species within the community (Johnson et al., 2012; Zhou

et al., 2002), intricate multi-species interactions (Doebeli and

Ispolatov, 2010), or functional redundancy (Ley et al., 2006;

Nemergut et al., 2013). Yet, when designing synthetic communities,

markedly fewer species may be required (Petrof et al., 2013). To ex-

plore this possibility and to characterize potential redundancy in

naturally occurring communities, we used our algorithm to identify

minimal communities required to perform various simple metabolic

syntheses within the context of a diverse natural community.

Specifically, given the promise of gut microbiome-based therapies,

we focused on minimal communities that consist of gut dwelling

species. To this end, we selected a set of 2051 species (represented as

Operational Taxonomic Units; OTUs) detected via 16S sequencing

of HMP stool samples. The set of metabolic reactions each OTU

could catalyze was determined using PICRUSt (Langille et al.,

2013). Combined, the aggregate metabolic network of this set of

species included 2225 unique metabolites. We then selected 10 000

random pairs of metabolites from this set, one as the available sub-

strate and one as the target product, and used our algorithm to iden-

tify minimal communities that could provide a pathway from

substrate to product. We specifically used our algorithm in three dif-

ferent settings: one with the metabolic network simplified such that

each reaction has a single substrate and a single product (see above),

one with the full bipartite graph representation of the metabolic net-

work (allowing each reaction to have multiple substrates and/or

multiple products), and one with the full bipartite graph representa-

tion but also including a set of common currency metabolites (based

on (Greenblum et al., 2012)) as available substrates.

As shown in Figure 4, for most random metabolite pairs, no set

of species had the capacity to perform the desired synthesis (poten-

tially owing to various gaps in the aggregate metabolic network and

incomplete annotation of the various species). Yet, when a solution

existed, it generally required only very few species (�5 for all metab-

olite pairs tested). Notably, since the simplified graph representation

requires only one substrate of a reaction to be available to generate

any of that reaction’s products (ignoring, for example, the need for

additional co-factors), many more solutions existed when this sim-

ple graph representation was used compared with the complete bi-

partite representation. Making currency metabolites available

evidently allowed additional reactions to be active and therefore re-

covered some of the metabolic capacity that could not be realized in

the bipartite graph representation. Given the small minimal com-

munities identified and the small number of unique species used in

these communities across all pairs (379 OTUs), one might suspect

that a small number of metabolic generalist species are responsible

for providing the required metabolic capacity in many of these min-

imal communities. Indeed, the number of reactions a species can

catalyze was found to be positively correlated with the frequency

with which that species was used in the identified minimal solutions

(r¼0.496, P-value � 10�15; Pearson correlation test). Importantly,

however, even the species that appears most frequently in identified

minimal solutions occurs in only<10% of the solutions, with the

next most frequent species occurring in<5%. Together, these results

suggest that even though a small number of species are required to

perform any relatively simple target synthesis, a variety of species

may be needed to catalyze a range of simple substrate/product

conversions.

4 Discussion

Recent efforts to manipulate various naturally occurring commun-

ities and to impact their activities have shown tremendous promise.

For example, efforts to modify the human gut microbiome have

demonstrated that properly perturbing this community can treat or

ameliorate certain conditions (Aroniadis and Brandt, 2013).

Expanding this approach to effectively treat a wider variety of dis-

eases, as well as alter the functions of environmentally and industri-

ally-relevant microbial communities, requires methods for rationally

designing communities with specific metabolic capacities. Above,

we take a first step towards this goal, introducing and validating a

novel algorithm which identifies minimal microbial communities

that provide specified and desired metabolic capacities.

Clearly, various biological factors are currently not considered

by our algorithm, including, for example, species-level interactions

(Hansen et al., 2007), the expected flux through each metabolic re-

action, and whether member species, or even the community as a

whole, can survive in the target environment (Ley et al., 2006).

Ignoring such factors may render communities designed by our algo-

rithm markedly different than naturally occurring communities and

synthetic communities constructed based on such designs may con-

sequently fail to survive or to perform specific desired tasks. For ex-

ample, the discrepancy between the small communities identified in

our analysis above and the extreme diversity observed in many nat-

urally occurring communities (Human Microbiome Project

Consortium, 2012b; Lozupone and Knight, 2007) may be likely ac-

counted for, at least partly, by such factors. Yet, our algorithm

Fig. 4 Solution sizes identified for 10 000 random substrate/product metabol-

ite pairs, using species from the Human Microbiome Project
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provides a starting point for such design efforts and for future

method development in this area. Specifically, selecting a commu-

nity based initially on the presence of desired metabolic capacities

provides a simple way to address an important prerequisite for com-

munity metabolism; any community designed to consume or pro-

duce given metabolites or to have some metabolic activity must

obviously also have the metabolic capacity to carry out those func-

tions. Our attempt to identify minimal communities may again not

necessarily be aligned with biological assembly rules, but offers sim-

ple candidate communities for further design refinement. Moreover,

by formulating our program as an ILP algorithm, we provide an

easy way to introduce additional design considerations. As our

understanding of the various constraints affecting community as-

sembly improves, such considerations can be added to this frame-

work by devising equations and inequalities that encode these

constraints.

Of the various considerations that could be implemented to fur-

ther refine any design approach, two stand out as logical next

steps. First, the expected stability of designed communities could

be improved by examining the likelihood that a combination of

species will coexist in a community. Specifically, information on

species co-occurrence in natural communities can be used to esti-

mate the tendency of various species pairs to co-exist or the ex-

clude one another from a shared environment (Faust et al., 2012;

Levy and Borenstein, 2013). Such information would allow an al-

gorithm to prioritize communities that minimize the risk of losing

member species due to antagonistic species interactions, ultimately

stabilizing community structure. Second, considering the predicted

activity of candidate communities, rather than just the presence of

specific metabolic capacities, could increase the likelihood that de-

signed communities would perform the desired task. Several frame-

works for predicting the metabolic activity of microbial

communities have recently been introduced (Chiu et al., 2014;

Harcomb et al., 2014; Zhuang et al., 2011; Zomorrodi et al.,

2014), potentially allowing future design algorithms to consider

predicted rates of metabolite consumption and production and pre-

dicted changes in species abundances over time. Our algorithm

could be used, for example, as an initial filtering step, providing a

set of candidate minimal communities that have the capacity for

some desired metabolism, followed by a metabolic model-based

prediction of the metabolic activity of each candidate community

to further refine the design process. Moreover, such metabolic

modeling could allow the design process to account for important

factors that our current algorithm may not be able consider. For in-

stance, our algorithm does not explicitly prevent community mem-

bers from degrading one or more of the specified target products.

Such inadvertent target metabolite degradation may depend on the

set of microbes present, other available substrates, and various en-

vironmental conditions, and could therefore be predicted and po-

tentially avoided using metabolic modeling-based design.

The ability to computationally design microbial communities

will be a useful tool for many purposes. For example, designed syn-

thetic communities could be ultimately used in place of FMTs,

removing the need for screening donor samples while also optimiz-

ing treatments to target specific conditions. Communities could also

be created for industrial resource and pharmaceutical production,

potentially obviating the need for extensive microbial genetic engin-

eering and providing novel mechanisms for production control in

the form of inter-species signaling (Brenner et al., 2008). Clearly,

such applications are not yet feasible and the development of a com-

prehensive, general-purpose design framework may still be out of

our reach for years to come. We hope, however, that our framework

will encourage future developments of such design methodologies

and will lay the foundation for future efforts in microbial commu-

nity design.
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