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Abstract

When facing the challenge of developing an individual that best fits its envi-

ronment, nature demonstrates an interesting combination of two, fundamentally

different, adaptive mechanisms: Genetic evolution and lifetime learning. Al-

though lifetime adaptations are not inherited in a pure Darwinian framework,

they may still change the individual’s fitness, and consequently the expected

number of offspring that carry its genotype. Such lifetime learning mechanisms

thus dramatically alter the course of the evolutionary process. When learning is

implemented via imitative or cultural learning, the resulting dynamics are fur-

ther complicated as the success of the learning process depends not only on the

interaction between the individual and its environment but also on the state of

other members of the evolving population. The primary goal of this dissertation

is hence to examine the complex interplay between evolution, learning, imitation

and culture.

In the first study presented in this dissertation, we examine the effect of simple

phenotypic plasticity on the rate of genetic evolution. Following numerous com-

putational models, it has become the accepted wisdom that lifetime acclimation

(e.g., via learning) smooths the fitness landscape and consequently accelerates

evolution. However, analytical studies, focusing on the effect of phenotypic plas-

ticity on evolution in simple unimodal landscapes, have often found that learning

hinders the evolutionary process rather than accelerating it. Addressing this dis-

crepancy, we provide a general framework for studying the effect of plasticity

on evolution in multipeaked landscapes and introduce a rigorous mathematical

analysis of these dynamics. We show that the convergence rate of the evolution-

ary process in a given arbitrary one-dimensional fitness landscape is dominated

by the largest descent (drawdown) in the landscape and provide numerical evi-

dence to support an analogous dominance also in multidimensional landscapes.

We consider several schemes of phenotypic plasticity and individual learning and

examine their effect on the landscape drawdown, identifying the conditions under

which plasticity is advantageous. The lack of such a drawdown in unimodal land-

scapes vs. its dominance in multipeaked landscapes accounts for the seemingly



contradictory findings of previous studies.

The plasticity schemes and evolutionary model examined in the first study

facilitate a rigorous quantitative analysis of the effect of plasticity on evolution.

Such an analysis is limited to simple learning models wherein the effect of learn-

ing on the fitness landscape structure can be clearly characterized. However,

living organisms demonstrate a variety of complex learning mechanisms, posing

a greater modeling and analysis challenge. Specifically, learning by imitation is

a highly complex cognitive process, involving vision, perception, representation,

memory and motor control and has attracted a great deal of attention in recent

years. In the second and third studies, we thus focus on the interaction be-

tween learning by imitation and evolution, using the framework of Evolutionary

Autonomous Agents (EAA).

We first focus on the effect of learning by imitation on the evolutionary pro-

cess. We describe a set of simulations where a population of agents evolves to

solve a certain task. In each generation, individuals can select other agents from

the population as models (teachers) and imitate their behavior. In contradis-

tinction to previous studies, we focus on the interaction between imitation and

evolution when imitation takes place only across members of the same generation,

and does not percolate across generations via vertical (cultural) transmission. We

show that introducing such an imitative process successfully enhances the evolu-

tion of autonomous agents when other forms of learning are not applicable.

Acknowledging the bidirectional interplay between evolution and imitation,

we then turn to examine the evolution of the underlying mechanisms that give

rise to imitative behavior. These mechanisms have been the subject of research in

various disciplines, from neuroscience to animal behavior and human psychology.

In particular, studies in monkeys and humans have discovered a neural mirror sys-

tem that demonstrates an internal correlation between the representations of per-

ceptual and motor functionalities. In contrast to previous engineering-based ap-

proaches, we present a novel framework for studying the evolutionary emergence

of imitative behavior. We develop evolutionary adaptive agents that demonstrate

imitative learning, facilitating a comprehensive study of the emerging underly-

ing neural mechanisms. Interestingly, these agents are found to include a neural
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“mirror” device comparable to those identified in biological systems. Further

analysis of these agents’ networks reveals complex dynamics, combining innate

perceptual-motor coupling with acquired context-action associations, to accom-

plish the required task. These findings suggest a universal and fundamental link

between the ability to replicate the actions of others (imitation) and the capacity

to represent and match others’ actions (mirroring).

Imitative learning capabilities may eventually give rise to cultural evolution -

the evolution of ideas, thoughts, knowledge and beliefs. Notably, cultural evolu-

tion can be studied in an analogous manner to genetic evolution, showing intrigu-

ing similarities (as well as differences). In the study concluding this dissertation,

we focus on cultural niche construction, a process by which certain evolving cul-

tural traits form a cultural niche that affects the evolution of other cultural traits.

We examine the dynamics of cultural niche construction in a metapopulation (a

population of populations), where the frequency of one cultural trait (e.g. the

level of education) determines the transmission rate of a second trait (e.g. the

adoption of fertility reduction preferences) within and between populations. We

formulate the Metapopulation Cultural Niche Construction (MPCNC) model by

defining the cultural niche induced by the first trait as the construction of a so-

cial interaction network on which the second trait may percolate. Analysis of

the model reveals dynamics that are markedly different from those observed in

a single population, allowing, for example, different (or even opposing) dynam-

ics in each population. In particular, this model can account for the puzzling

phenomenon reported in previous studies, that the onset of the demographic

transition in different countries occurred at ever lower levels of development.

These studies clearly demonstrate that the interplay between evolution and

lifetime adaptation has a marked effect both on the evolutionary trajectory and

on the evolving adaptive mechanisms. These interactions form an integral compo-

nent of the process that gave rise to the complex living organisms found in nature

and should be properly incorporated and carefully considered while studying the

evolutionary dynamics of adaptive populations.
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Chapter 1

Introduction

In this chapter we will present some of the related work, background and concepts

concerning the studies included in this dissertation. In particular, the motivation

and challenge in studying the dynamics of adaptive individuals in evolving popu-

lations will be presented, as well as a brief overview of various forms of plasticity

and learning which relate to our study. A more detailed introduction to each of

these subjects is included in the pertaining chapters.

1.1 Adaptive Individuals in Evolving Popula-

tions

The modern synthesis describes the evolutionary process as a change in the fre-

quency of alleles determining heritable traits within a population over the course

of generations (Futuyma, 2005). Natural selection acts on the genetic variation

in the population (created by mutation, genetic recombination and gene flow),

leading eventually to the spread and prevalence of those favorable heritable traits

that make an organism better adapted to its environment (Fisher, 1930; Wright,

1932; Haldane, 1932). Assuming that each genetic configuration confers a certain

survival and reproduction probability (termed fitness) upon the individual that

carries it, evolution is often conceived as a simple search process in the genotypic

space for optima in the fitness landscape (Wright, 1932). Accordingly, traditional

mathematical and computational models of evolution regularly assume a prede-

fined, fixed mapping from genotypes to phenotypes and fitness values (Gillespie,

2004; Hartl, 2000).

However, in reality, many organisms also incorporate various learning and

plasticity mechanisms, allowing them to better acclimate to the environment dur-
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ing their lifetime (Pigliucci, 2001). Developmental plasticity, individual learning

and social learning are just a few examples of such mechanisms. The outcome

of these learning processes depends not only on the genetic material of the or-

ganism, but also on the environment it encounters during its lifetime, the state

of other members of the population, and other stochastic parameters involved in

learning. Although such acquired traits are not directly inherited in a pure Dar-

winian framework, clearly, the selection of adaptive individuals is not governed

only by their innate, genetically encoded, capabilities, but ultimately, by their

overall success after learning takes place. Such lifetime learning mechanisms may

hence have a major effect on the evolutionary dynamics and may dramatically

change the course of evolution.

Accordingly, the hypothesis underlying the studies presented in this disserta-

tion is that the interplay between evolution and lifetime adaptation both markedly

affects the dynamics of the evolutionary process and significantly influences the

evolving adaptive mechanisms (Parisi and Nolfi, 1996). We believe that without

a comprehensive understanding of these interactions, the study of either evolu-

tionary dynamics or learning mechanisms is bound to be lacking. A framework

that incorporates the variety of adaptive mechanisms found in nature can shed

new light on the ways these mechanisms evolve, operate and interact.

Although the foundations of the research of the interaction between evolu-

tion and learning date back to the late 19th century (Baldwin, 1896; Morgan,

1896), the issues we address in this dissertation are presently at the forefront of

theoretical and computational research (as demonstrated in the following chap-

ters). The Evolutionary Computation and Adaptive Behavior communities, as

well as traditional population biologists, continuously study the dynamics of such

interactions in a wide range of environments, tasks and applications (Belew and

Mitchell, 1996; Weber and Depew, 2003).

1.2 From Phenotypic Plasticity To Culture

Lifetime adaptation in nature takes many forms, ranging from simple pheno-

typic (or developmental) plasticity, through individual learning (e.g., via trial

and error), to social learning. These learning schemes significantly differ in their

underlying mechanisms, level of complexity, capabilities and applications (Heyes

and Galef, 1996). In the studies included in this dissertation we touch upon sev-

2



eral lifetime adaptation mechanisms, and examine the interaction between them

and the evolutionary process. Specifically, we focus on three such mechanisms:

1. Individual learning (and, more broadly, phenotypic plasticity)

2. Imitative learning

3. Cultural learning

Although adaptation mechanisms cannot always be clearly categorized or par-

titioned into a well-defined hierarchy, the above three mechanisms manifest, at

least to some extent, an increasing level of complexity in the dynamics they

yield when interacting with the evolutionary process: While individual learning

is controlled mostly by the interaction between the individual and its environ-

ment, imitative learning is largely influenced by the state of other individuals in

the evolving population. Similarly, when imitation is frequent and takes place

also across generations, cultural evolution becomes relevant and the knowledge

possessed by the evolving population as a whole develops and demonstrates es-

sentially independent evolutionary dynamics (Cavalli-Sforza and Feldman, 1981).

1.2.1 Phenotypic Plasticity and Individual Learning

Phenotypic plasticity is defined as the ability of an organism with a given geno-

type to change its phenotype in response to changes in the environment (Pigliucci,

2001). This ability is often expressed as norms of reactions, mapping a range of

environments to a range of phenotypes (Schlichting and Pigliucci, 1998). Dif-

ferent organisms display different capacity for phenotypic plasticity, indicating

that phenotypic plasticity itself can evolve and has a significant adaptive value

(de Jong, 2005).

Traditionally, the notion of phenotypic plasticity is restricted to developmen-

tal processes, physiological and behavioral shifts, or environment-dependent gene

expression (Dewitt and Scheiner, 2004). However, adopting a broader definition,

plasticity can be conceived as any beneficial response to the environment exerted

by an individual in order to increase its effective fitness. According to this def-

inition, various learning schemes that allow an individual to better adapt to its

environment can be also categorized as phenotypic plasticity mechanisms. On

the other hand, according to some researchers, phenotypic plasticity mechanisms

3



may also take the form of increased random phenotypic variation or developmen-

tal noise (rather than a directional beneficial shift) in response to environmental

fluctuations (Gavrilets and Hastings, 1994).

The common property of all these mechanisms is the ability of a given geno-

type to realize certain phenotypes that would not have been accessible without

plasticity. Such phenotypic modifications clearly affect the structure of the fitness

landscape governing evolution and change the evolutionary dynamics. Hence,

in Chapter 2 of this dissertation, we group together the above strict notion of

phenotypic plasticity with simple learning mechanisms and random phenotypic

variation in our study of their effect on the evolutionary process.

1.2.2 Imitation and the Mirror System

Imitation is an advanced cognitive learning mechanism whereby an individual ob-

serves another individual’s behavior and replicates it. It is an effective and robust

way to learn new traits by utilizing the knowledge already possessed by others.

Recent years have seen a renewed interest in imitation (Prinz and Meltzoff, 2002)

and it has been addressed by researchers of developmental psychology, social

cognition, neurophysiology and neuropsychology (Meltzoff, 1996; Bargh, 1997;

Rizzolatti et al., 1996, 2002; Gallese et al., 1996). The definition of imitative

behavior in the literature ranges from very strong definitions, which require an

aspect of novelty in the imitated behavior, to very weak definitions with no clear

boundaries with forms of non-imitative social learning (Billard and Dautenhahn,

1999). Researchers of imitation in humans and animals often categorize social

learning into stimulus enhancement, response facilitation, emulation, and true

imitation (Byrne and Russon, 1998). Here, we adopt a relatively broad definition

and refer to any scenario wherein the behavior of one individual in the population

is used to train another individual, as imitation.

A large portion of this dissertation (Chapter 3 and Chapter 4) examines learn-

ing by imitation and its interplay with the evolutionary process. There are several

major motivations for studying imitative learning: First, it’s a highly complex

learning scheme, involving numerous cognitive processes. Only recently, work

in neuroscience has begun to reveal the mechanisms underlying imitation in the

brain (Gallese et al., 1996; Rizzolatti et al., 2002). It is thus intriguing to examine

how these complex learning devices emerged. Second, in contrast to individual

learning, the success of an imitative individual largely depends on the state of
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other members of the population. Hence, in the context of the interaction between

learning and evolution, imitative learning gives rise to complex hybrid dynamics

which are challenging to study. Furthermore, from an evolutionary computation

standpoint, this form of learning is naturally applicable and can be harnessed

to improve evolutionary search algorithms where other forms of learning are not

applicable (Borenstein and Ruppin, 2003a). Third, learning by imitation is a

common and powerful tool in human learning. Researchers of imitation have

emphasized the influence of imitation in infants and highlighted imitation as an

important channel for learning in school-age children (Meltzoff, 1988). Human

beings are by far the most imitative creatures, however, evidence for imitative

behavior in other species is continuously accumulating (Kawamura, 1963; Whiten

and Ham, 1992; Heyes and Galef, 1996; Whiten et al., 1999). And finally, imita-

tive learning is a prerequisite for cultural evolution (Boyd and Richerson, 1985;

Cavalli-Sforza and Feldman, 1981), a process which is further studied in this

dissertation.

Focusing on the neuronal devices underlying the capacity to imitate, research

in neurophysiology and neuropsychology has led to the exciting discovery of mir-

ror neurons. These neurons, found in area F5 in monkeys, discharge both when

the monkey performs an action and when it observes another individual making

a similar action (Rizzolatti et al., 1996). Studies in humans (using TMS, MEG,

and EEG) have revealed an analogous mechanism, whereby motor centers res-

onate during movement observations (Fadiga et al., 1995; Hari et al., 1998; Cochin

et al., 1998; Iacoboni et al., 1999; Buccino et al., 2001). These neuronal devices

demonstrate an internal correlation between the representations of perceptual and

motor functionalities, and may hence form one of the underlying mechanisms of

imitative ability. It is reasonable to assume that imitation has been selected by

evolution because individuals capable of imitative learning could have utilized

a wider arsenal of favorable acquired behaviors (Whiten and Ham, 1992). Ac-

cordingly, our hypothesis is that neuronal structures and mechanisms involved

in imitative behavior, such as the mirror system, should be studied and can be

explained best by examining the evolutionary process that produced them.

1.2.3 Culture and Cultural Evolution

Imitation, and more generally, social learning, is also the force that drives cultural

evolution - the process by which ideas, thoughts, knowledge and beliefs spread
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and change over time (Boyd and Richerson, 2005). In the mid-20th century, so-

cial sciences started to study how and why various ideas spread in a population.

Research concerning the diffusion of innovations was pioneered by Everett Rogers

(Rogers, 1962), examining attributes of innovations and adaptation, categories

of adopters, diffusion networks and the consequences of innovations. In 1976,

Richard Dawkins (Dawkins, 1976) coined the term “meme” to describe a cul-

tural information unit (or cultural gene) that replicates and propagates from one

mind to another. The concept of memes as evolutionary replicators was further

promoted by Susan Blackmore (Blackmore, 1999) and the founding of memet-

ics - a new scientific discipline that studies evolutionary models of information

transmission (Moritz, 1990).

Indeed, cultures never stand still - they evolve, showing many similarities to

biological evolutionary processes. Ideas (or for that matter, memes), percolate as

units of cultural information, which is analogous in many ways to the spreading

of genes, the units of genetic information. Concepts of natural selection and

mutation can be also applied to the study of cultural evolution, to explain why

one idea becomes extinct while other ideas survive, spread and change over time

(Lynch, 1999; Brodie, 1995). These similarities led to the formation of various

mathematical frameworks (mostly originating from classical population biology

theory) that study cultural transmission and its interaction with the evolutionary

process (e.g Boyd and Richerson, 1985; Cavalli-Sforza and Feldman, 1981; Laland,

1992; Feldman and Laland, 1996). These frameworks allow social scientists to

model cultural transmission and evolution, using a well-established, quantitative,

and rigorous toolbox.

1.3 Studying Evolution and Learning

As evident from the previous sections, the interplay between evolution and learn-

ing embodies complex dynamics that consequently render its study a challenging

task. A large body of work in recent years has studied the interaction between

lifetime learning and genetic evolution. Hinton and Nowlan (1987) introduced

a simple model that demonstrates how learning can guide and accelerate evo-

lution. Nolfi et al. (1994) presented experimental results supporting this view,

even when the learning task differs from the evolutionary task. Other researchers

(Nolfi and Parisi, 1997; Floreano and Mondada, 1996) studied the interaction be-
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tween learning and evolution in robots and artificial agents systems. New studies

of this basic interaction have been also presented very recently (Paenke et al.,

2006; Mills and Watson, 2006). For a collection of classic and recent studies, see

Belew and Mitchell (1996). A more multidisciplinary collection can also be found

in Weber and Depew (2003). Learning by imitation has also been studied in the

context of its interaction with evolution by researchers of artificial intelligence and

robotics (Hayes and Demiris, 1994; Billard and Dautenhahn, 1999; Dautenhahn

and Nehaniv, 2002b), and in the context of gene-culture co-evolutionary models

(Feldman and Laland, 1996). A more detailed overview of related work can be

found in each of the pertaining chapters. We believe that the studies presented

in this dissertation fill several important gaps in this body of work and form an

important contribution to the understanding of these fundamental processes.

1.3.1 A Bidirectional Interaction

As noted before, we believe that the hybrid adaptation dynamics, combining

evolution and lifetime learning, have a marked effect both on the evolutionary

process and on the evolving learning mechanisms (Parisi and Nolfi, 1996). In par-

ticular, in our study of imitative learning we wish to examine two basic questions:

(i) Can imitation enhance or accelerate the evolutionary process? (ii) How could

the mechanisms underlying imitative learning have evolved and prevailed in the

first place? To address these questions and gain a comprehensive understanding

of these phenomena we utilize a two-pronged approach:

(a) Study the evolutionary benefits of learning by imitation.

(b) Study the emergence of imitative behavior mechanisms.

The main difference between these two approaches is the underlying assumption:

In the first approach, the ability (and incentive) to learn or imitate is assumed to

be instinctive, and the focus is on the effect of this mechanism on evolution. We

regard learning as a “black box”, ignoring the perceptual and neuronal mecha-

nisms it may require. In the second approach, the effect of learning on evolution

is assumed to be beneficial, and the emergence of the mechanisms that support

imitative behavior is in the center of attention.

7



1.3.2 Methods and Tools

In this dissertation we present several studies that concern the interplay between

evolution and learning. To this end, we apply a plethora of tools, ranging from

mathematical analysis to autonomous agent simulations. As is often the case in

these studies, only simple and somewhat naive models can be fully analyzed math-

ematically. Such simple models, however, still offer valuable insights concerning

the underlying dynamics and provide important intuition for the construction of

more complex models. When a mathematical analysis is not feasible, numerical

simulation or an agent-based study is applied.

In our first study, we formulate the process of learning as a transformation

that operates on the fitness landscape and modifies the selection pressures. Using

this framework we can apply random walk theory (Spitzer, 2001) to provide an

accurate measure of evolutionary rates with and without learning and study which

forms of learning are beneficial and under which conditions.

In our next two studies, focusing on imitative learning, such a mathematical

framework is not possible due to the complexity of the interplay and we hence

resort to evolutionary autonomous agent (EAA) simulations (Ruppin, 2002). We

first demonstrate how imitative learning can enhance autonomous agents evo-

lution. Aside from the biological implications of this study, it also suggests a

simple and powerful method to improve agent-based search algorithms. Second,

we present a more complex model based on evolutionary adaptive agents (Flo-

reano and Urzelai, 2000) that are capable of imitative learning. Evolving agents

that embody simple and fully accessible imitative mechanisms form a simple, yet

biologically plausible model for imitation in natural systems. The emergence of

unique neuronal devices in artificial neural networks, and a rigorous analysis of

these devices’ activity and link with the rest of the network provide new insights

regarding the evolution and function of imitative learning.

Once the evolutionary origins and effects of imitation have been examined,

we turn to study the dynamics of cultural evolution in a metapopulation. Owing

to the similarity between genetic and cultural evolution mentioned above, we

can again apply a mathematical formulation drawn from traditional population

biology theory, and combine it with social network theory for studying the process

of cultural niche construction (Ihara and Feldman, 2004; Kendal et al., 2005). The

combination of these two theories produces an intriguing model that can account

for puzzling phenomena reported in previous social science studies.
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Chapter 2

The Effect of Phenotypic
Plasticity on the Rate of
Evolution in Multipeaked Fitness
Landscapes

Based on:

Elhanan Borenstein, Isaac Meilijson and Eytan Ruppin
The effect of phenotypic plasticity on evolution in mul-
tipeaked fitness landscapes, Journal of Evolutionary Biology,
19(5), 1555-1570, 2006.

Although traits acquired during the lifetime of an organism are not directly

inherited in a pure Darwinian framework, they may change the individual’s fit-

ness and consequently dramatically alter the dynamics of the evolutionary pro-

cess (e.g., via genetic assimilation of initially acquired traits through the Bald-

win effect, Baldwin, 1896; Morgan, 1896). The interplay between evolution and

phenotypic plasticity (e.g., lifetime learning, developmental plasticity, etc.) is

thus far from trivial and has been the subject of numerous biological (Wadding-

ton, 1942, 1953; Mery and Kawecki, 2002, 2004) and computational (Hinton and

Nowlan, 1987; Maynard-Smith, 1987; Belew, 1990; French and Messinger, 1994;

Gruau and Whitley, 1993; Menczer and Belew, 1994; Mayley, 1996; Moriarty and

Mikkulainen, 1996; Parisi and Nolfi, 1996; Floreano and Urzelai, 1998; Ancel,

1999; Nolfi and Floreano, 1999; Weber and Depew, 2003) studies. Clearly, the

capacity of a phenotype to better adjust to its environment has an advantageous

9



effect in a non-stationary environment, allowing individuals to acclimate to rapid

changes that cannot be tracked by the slow evolutionary process (Littman and

Ackley, 1991; Todd and Miller, 1991; Nolfi and Parisi, 1997). However, it has

been argued that phenotypic plasticity may also be beneficial in static (or slowly

changing) environments (Hinton and Nowlan, 1987; Nolfi and Floreano, 1999),

facilitating the evolutionary search by smoothing the fitness landscape. Yet, this

beneficial effect of phenotypic plasticity on evolution in a static environment is

controversial, owing mainly to inconsistent results obtained in various simula-

tion studies and the lack of a rigorous mathematical analysis. We hence focus

in this chapter on a mathematical analysis of the interplay between plasticity

on evolution, characterizing the plasticity schemes and conditions under which

phenotypic plasticity has an advantageous effect and identify its origins.

The remainder of this chapter is organized as follows. We first review previous

work studying the effects of phenotypic plasticity on the rate of evolution and

identify the source of the discrepancy concerning these effects. In Section 2.2, we

use Random Walk (RW) theory to analyze a simple model of evolution and derive

a rigorously quantitative measure of evolutionary rate on any given multipeaked

landscape. We then turn, in Section 2.3, to examine the effect of plasticity on

evolution: We introduce the concept of innate vs. effective fitness landscapes,

representing the effect of plasticity as a transformation, replacing the innate

fitness landscape that governs selection when no plasticity is present with an

alternative effective fitness landscape. Using this concept and the derived RW

measure, the effect of phenotypic plasticity on evolution can be quantified by

comparing the evolutionary convergence rate using the innate vs. the effective

fitness functions for selection. We study various plasticity schemes by examining

the effective fitness landscapes they induce and their effect on the evolutionary

rate. In particular, we examine both deterministic and stochastic models of

learning as well as a simple model of random phenotypic variation, and investigate

the influence of varying plasticity rate. We further extend the random walk model

in Section 2.4 to consider more complicated evolutionary dynamics and better

align it with traditional population biology models. The chapter concludes with

a discussion of the implications of our findings. The theory and results presented

in this chapter have been published in Borenstein et al. (2006c).
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2.1 Previous Work

In recent years, a number of researchers have studied the complex interaction be-

tween phenotypic plasticity (and specifically, learning) and evolution, employing

a variety of methodologies. Comprehensive theories that can combine the two

paradigms of evolution and phenotypic plasticity have been recently constructed

(Schlichting and Pigliucci, 1998; West-Eberhard, 2003), demonstrating the im-

portance of development and phenotypic response to environmental stimuli in

evolutionary theory. In this chapter, however, we focus on one specific question

concerning adaptive evolution of phenotypes, examining the effect of plasticity on

the convergence rate of the evolutionary process. In the seminal work of Hinton

and Nowlan (1987), a simple computational model was introduced to demon-

strate how learning can guide and accelerate evolution (see also Maynard-Smith,

1987). Despite its obvious limitations (Nolfi and Floreano, 1999), Hinton and

Nowlan’s model has successfully demonstrated a distilled model of this effect,

bringing the interaction between learning and evolution back to the forefront of

scientific research. A large body of work that followed Hinton and Nowlan’s study

(Belew, 1990; Littman and Ackley, 1991; Gruau and Whitley, 1993; French and

Messinger, 1994; Menczer and Belew, 1994; Littman, 1996; Nolfi and Floreano,

1999; Dopazo et al., 2001) further explored the beneficial effect of learning on

evolution. Using various simulations of the evolutionary process, these studies

demonstrated the benefit of combining learning and evolution in a wide range

of stationary and non-stationary environments. Specifically, it has become the

accepted wisdom that lifetime learning accelerates evolution in stationary envi-

ronments by smoothing the fitness landscape and setting up favorable selection

preferences for those individuals whose genotypic configurations are in the vicin-

ity of the optimal genotype.

However, even with this ever-growing body of evidence for the advantageous

effect of phenotypic plasticity on evolution, rigorous theoretical analysis of this

interaction is still scarce. Moreover, such analyses have often found that learn-

ing hinders evolution, leading to contradictory predictions (Mery and Kawecki,

2004): Fontanari and Meir (1990) performed a quantitative analysis of an asexual

version of the Hinton and Nowlan’s model, based on a classic population genetic

approach. Corroborating the claims made by Hinton and Nowlan, they showed

that learning contributes to the robustness of the evolutionary process against

high mutation rates. Studying a more general selection scenario and considering
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a one-dimensional Gaussian fitness function, Anderson (1995) found that while

learning does have an obvious beneficial effect in changing environments, the ad-

vantage of learning in a fixed environment is transient. Representing lifetime

acclimation as an increase in the variance of selection and using quantitative

genetic models, he showed that learning actually slows the final convergence of

the population to a maximal fitness solution. Ancel (2000) further demonstrated

that when an extreme fitness scenario is not assumed, phenotypic plasticity does

not universally accelerate evolution. Ancel’s findings suggest that the Baldwin

expediting effect (the term she used for this beneficial effect of learning) may thus

not be sufficient to account for the evolutionary success of learning.

The findings of these analytical studies clearly disagree with the beneficial ef-

fect of phenotypic plasticity that has been demonstrated in the simulation studies

cited above, leading to a long-standing debate. We believe that the source of the

discrepancy lies in the structure of the fitness landscapes analyzed. While most

of the simulation studies explored relatively complex artificial environments, such

that induce highly irregular fitness landscapes, the mathematical anaylses have

employed common population dynamics models, focusing on unimodal landscapes

(Table 1). These relatively simple landscapes lack one of the key characteristics

influencing the convergence rate of the evolutionary process - multiple local op-

tima. The existence of multiple optima (and consequently, multiple domains of

attraction) significantly slows down the evolutionary process and hence may make

the effect of phenotypic plasticity (or any other mechanism that smooths the land-

scape) more important. Furthermore, complex genotype-phenotype mapping,

developmental processes, epistasis, multiobjective optimization and frequency

Table 2.1: Findings concerning the effect of phenotypic plasticity on evolution
Fitness landscape Simulations results Analytical results

Extreme† accelerates evolution1 accelerates evolution2

Unimodal slows evolution3 advantage is transient4

slows evolution 5

Multipeaked‡ accelerates evolution6,7,8,9,10 N/A
improves evolving solution8,9,10

[†] One optimal phenotype, [‡] Complex environments, [1] Hinton and Nowlan
1987, [2] Fontanari and Meir 1990, [3] Dopazo et al. 2001, [4] Anderson 1995, [5]
Ancel 2000, [6] Littman and Ackley 1991, [7] Nolfi and Floreano 1999, [8] Gruau

and Whitley 1993, [9] French and Messinger 1994, [10] Littman 1996
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dependent selection may all render multiple optima genetic solutions (Wright,

1932), making such multipeaked landscapes a feasible model for biological land-

scapes and the subject of numerical (Kauffman and Levin, 1987) and experimental

(Macken and Perelson, 1989; Korona et al., 1994; Burch and Chao, 1999; Lenski

et al., 1999) studies. One noticeable piece of evidence for this characteristic of

biological fitness landscapes is demonstrated by a recent study of laboratory evo-

lution of Escherichia coli (Fong et al., 2005). Using parallel, replicate adaptive

evolution experiments and examining the evolution endpoints, it was shown that

the fitness landscape includes distinct peaks of increased adaptive fitness. As

shown by Table 1, a rigorous analysis of the effect of phenotypic plasticity on

evolution in such landscapes is lacking.

To fill this gap, we focus next on a mathematical analysis of the effects of phe-

notypic plasticity on evolution in arbitrary multipeaked landscapes. Our analy-

sis facilitates a quantitative comparison between the evolutionary rate with and

without phenotypic plasticity, and permits us to identify the origins of the ad-

vantageous effect of plasticity in such biologically plausible fitness landscapes.

2.2 Mathematical Analysis of Evolutionary Rate

in Multipeaked Landscapes

2.2.1 One-Dimensional Arbitrary Multipeaked Landscapes

Analyzing the dynamics of an evolutionary search on a given landscape has at-

tracted considerable attention in recent years (Kallel et al., 2001). Most efforts

focused on studying the geometric properties of fitness landscapes, including mul-

timodality (Goldberg, 1989), autocorrelation (Weinberger, 1990), and neutrality

(Huynen et al., 1996a) and on strictly uphill adaptive walk dynamics (Kauff-

man and Levin, 1987), in an attempt to predict the difficulty of the search task

(Stadler, 1995). Here, we provide a direct estimate of the time it will take a

stochastic evolutionary process to reach the global optimum on an arbitrary land-

scape. To obtain a rigorous mathematical analysis of the evolutionary process’s

dynamics we employ a canonical, one-dimensional model of asexual evolution in

a fixed arbitrary environment. Each genotype is encoded by single integer value

x, whose fitness value is given by F (x). We assume that the genetic configuration

in the first generation is 0 and let N denote the location of the global optimum.

Evolution is represented as a simple random walk (RW) process wherein the prob-
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abilities pi (taking a +1 step) and qi = 1−pi (taking a −1 step) for each location

i are determined according to the differences between the fitness value of i and

those of its neighboring genetic configurations (see also Appendix B). It should

be noted that in contrast to genetic drift processes that are often modeled by

simple symmetric random walks (i.e., pi = qi = 1/2 for every i), here, the +1

and −1 step probabilities depend on the fitness landscape structure and hence,

pi and qi are not necessarily equal and may also vary for different i values. Con-

sequently, we use a nonsymmetric random walk model (Spitzer, 2001), allowing

us to represent also non-neutral selection schemes. The term random thus refers

to the stochastic nature of the walk process, where in each point of time the step

direction is selected at random with certain probabilities. Such nonsymmetric

random walk models are commonly used in physics, engineering, economy and

finance (Hughes, 1995).

Within this model, the expected first-passage time from 0 to N , EN
0 , can serve

as a good measure for the progress rate of the evolutionary process (describing

the time to first encounter of the global optimum) and can be explicitly calculated

for any given one-dimensional landscape. Formally, consider a simple RW St (±1

increments) in a changing environment on {0, 1, 2, . . . , N}. Let pi = P (St+1 =

i + 1|St = i) and let qi = 1 − pi = P (St+1 = i − 1|St = i). Let also ρi denote

the odds-ratio qi

pi
. Note that ρ < 1 indicates a positive selection pressure, ρ > 1

indicates a negative selection pressure, and ρ = 1 represents regions wherein

p = q and thus no selection pressures are exerted (neutral drift). Focusing on

the time it takes evolution to reach the global optimum from an initial genetic

configuration, it should be noted that the term positive selection pressure is used

here in the sense that the +1 mutant, which is closer to the global optimum than

the −1 mutant, is also fitter. Similarly, a negative selection pressure indicates

regions wherein the −1 mutant is more fit than the +1 mutant. Let p0 = 1 and

assume that 0 < pi < 1 for all 0 < i < N . As we show in Appendix A.1, the

expected first-passage time from 0 to N (i.e., the expected time to first hit N

starting at 0) on a given landscape is

EN
0 = N + 2

∑
i≤j

0<i,j<N

j∏

k=i

ρk . (2.1)

This expression can also be represented as the quadratic form
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EN
0 = 1′Ã1 (2.2)

where

Ã =




1 ρ1 ρ1ρ2 ρ1ρ2ρ3 ρ1ρ2ρ3ρ4 · · · ∏N−1
k=1 ρk

ρ1 1 ρ2 ρ2ρ3 ρ2ρ3ρ4 · · · ∏N−1
k=2 ρk

ρ1ρ2 ρ2 1 ρ3 ρ3ρ4 · · · ∏N−1
k=3 ρk

ρ1ρ2ρ3 ρ2ρ3 ρ3 1 ρ4 · · · ∏N−1
k=4 ρk

...
. . .

...∏N−1
k=1 ρk

∏N−1
k=2 ρk

∏N−1
k=3 ρk · · · ρN−2ρN−1 ρN−1 1




.

As shown in Appendix A.1, this expression for the mean first-passage time from

0 to N on an arbitrary environment, also collapses appropriately to the common

expressions in the simple case of a constant environment. Specifically, the above

quadratic form yields EN
0 = N2 in a constant symmetric environment (inducing

random drift), a linear first-passage time (in N) in a constant nonsymmetric

environment where ρ < 1 (positive selection) and an exponential first-passage

time in a constant nonsymmetric environment where ρ > 1 (negative selection).

We further derive an asymptomatic for the first passage-time (see Appendix A.2).

For a multipeaked landscape, define the drawdown R as the maximal element in

the sum above:

R =max
i≤j

0≤i,j<N

j∏

k=i

ρk . (2.3)

This characterizing feature of the landscape has also been termed in the litera-

ture gap or extent (Noskowicz and Goldhirsch, 1990; Meilijson, 2003). We show

that the expected first-passage time is dominated by R, whereby EN
0 is sharply

bounded from above by (see Appendix A for a full analysis):

EN
0 ≤ N2(

1 + R

2
) . (2.4)

Furthermore, as demonstrated in Appendix A.2, this bound is reached when all ρi

values contributing to the drawdown collapse to a single point in the landscape.

Hence, crossing the fitness landscape from the initial genetic configuration toward

the global optimum, R corresponds to the height difference between the record

high fitness value to the consecutive record low fitness value (i.e., the largest

descent along this fitness landscape), as illustrated in Figure 2.1.
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Figure 2.1: A qualitative illustration of the fitness drawdown.

2.2.2 Multidimensional Arbitrary Multipeaked Landscapes

While the one-dimensional case allows for a rigorous analysis of expected first-

passage times, such an analysis is hard to obtain for a multidimensional fitness

landscape. We show, however, that an analogous dominance of the drawdown

on the evolutionary rate can be inferred through numerical simulations. In this

case, we consider all the possible pathways from the initial configuration to the

global optimum configuration. Each of these pathways can be conceived as a

simple one-dimensional landscape, with a specific drawdown value. We will term

the pathway with the minimal drawdown value ‘the Principal-Pathway’ and the

drawdown value it induces ‘the Principal-Pathway drawdown’. We maintain that

the Principal-Pathway drawdown dominates the random walk first-passage time

on a given multidimensional landscape in a similar manner to that shown in the

one-dimensional case (see Appendix A.3 for details and discussion).

We validate the strong correlation between the Principal-Pathway drawdown

and the first-passage time through numerical simulations, using common mul-

timodal benchmark functions. These functions are utilized to generate numer-

ous landscapes with 1, 2 and 3 dimensions and varying drawdown values. The

Principal-Pathway drawdown (or simple drawdown value in the one-dimensional

case) and the expected first-passage time to the global-optimum, EN
0 , were eval-

uated for each landscape (see Appendix A.3 for details). As demonstrated in

Figure 2.2, there is a strong correlation between the drawdown value in each

fitness landscape and the first-passage time of the random walk process, corrob-

orating the validity of the fitness landscape’s drawdown as a measurable bound

for the expected evolutionary progress rate.
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Figure 2.2: The correlation between the expected first-passage time and the land-
scape drawdown in multidimensional landscapes. An example of two-dimensional
landscapes generated by the (A) Rastrigin function (Cr = 3) and the (B) Schwe-
fel function (Cs = 0.01) (see Appendix A.3 for more details on these functions).
(C) The correlation between the expected first-passage time and the landscape
drawdown. Numerous landscapes of different dimensions and varying drawdown
were tested. EN

0 was evaluated for each landscape through 100 random walk sim-
ulations. Landscapes for which not all simulations hit the global optimum within
250,000 steps were excluded from our analysis. For the one-dimensional land-
scapes, the expected first-passage time was analytically calculated as described
before. The drawdown value is normalized according to the asymptotic bound
found for the one-dimensional case, where N denotes the length of the pathway.
As the drawdown values (and consequently, the first-passage times) exhibit a
large variation, a logarithmic scale was applied. Linear regression analysis for
the correlation between R and EN

0 in the Rastrigin landscapes yielded coeffi-
cient of determination values (percent of variance explained) of 0.995, 0.9971 and
0.9961 for the 1, 2 and 3 dimensional landscapes respectively. In the Schwefel
landscapes the resulting coefficient of determination values were 0.9809, 0.9718
and 0.9818 for the same dimensions.
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2.3 The Effect of Phenotypic Plasticity on Evo-

lution

2.3.1 Innate vs. Effective Fitness Landscapes

Having established a measure of evolutionary rate, we turn to examine the dy-

namics of the evolutionary process in two modes: In the first, non-plastic mode,

phenotypic plasticity is absent and the fitness value F (~x) assigned to each geno-

typic configuration ~x is uniquely determined according to the innate survival and

reproduction probability of the phenotype that it encodes, termed innate fitness.

In the second, plastic mode, phenotypes can vary during their lifetime and as

a result may effectively gain a different (and potentially higher) fitness value.

Clearly, in this mode, selection operates according to the effective fitness value

obtained by each individual. We denote this effective fitness value, Fefc(~x). It

should be noted that both the innate and the effective fitness landscapes ulti-

mately correspond to the common notion of fitness in natural selection. We use

the terms innate and effective fitness to simply distinguish between the fitness

values that govern selection without and with plasticity. Phenotypic plasticity

hence manifests itself as a transformation of the fitness landscape, replacing the

innate fitness that initially governed selection with an effective fitness landscape

(Figure 2.3A). The strength of this simple model lies in the fact that the complex

dynamics of a hybrid process combining evolution and phenotypic plasticity can

be studied by examining the simpler dynamics of a pure evolutionary process on

the appropriate effective fitness landscape. The effect of phenotypic plasticity on

the evolutionary convergence rate can be measured by comparing the time it takes

the evolutionary process to obtain an optimal genotype using the innate vs. the

effective fitness functions for selection. In particular, the random walk analysis

and drawdown value presented in Section 2.2 provide a measurable bound for the

expected evolutionary progress rate for any given landscape, allowing for a direct

quantitative comparison between the innate and the effective fitness landscapes.

In this section we examine several models of phenotypic plasticity, for which

the resulting effective fitness landscapes can be explicitly constructed and stud-

ied. We start with a simple model of deterministic learning, where phenotypic

plasticity is manifested as a hill climbing process (either ideal or partial). Next,

we examine a stochastic learning model in which the direction of each learning

iteration is determined probabilistically. Finally, although traditionally not de-
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fined as a form of phenotypic plasticity, a model of random phenotypic variation is

presented, where each genotype randomly realizes one of several alternative phe-

notypes. We compare the drawdown of the original, innate landscape with that

of the resulting effective fitness landscapes induced by these plasticity schemes.

Identifying the schemes and conditions under which the fitness landscape draw-

down is reduced (and thus, the rate of evolution is accelerated) provides a char-

acterization of the beneficial effect of phenotypic plasticity.

2.3.2 Ideal and Partial Deterministic Learning

Individual learning, as a form of phenotypic plasticity, is modelled as an iter-

ative process of phenotypic modifications aimed at increasing the individual’s

effective fitness, taking the form of a simple gradient-ascent process in the geno-

type/phenotype space. As in previous studies (Hinton and Nowlan, 1987; An-

derson, 1995), we focus on the simple case of one-to-one mapping from genotype

to phenotype and assume that learning and evolution both operate on the same

fixed fitness landscape (see also Section 2.5). We examine a simple model of

learning where during each learning episode (iteration), an individual compares

the innate fitness value of its current configuration with those of slightly modified

configurations, and adopts a modified configuration if the latter’s innate fitness

value is higher (see Figure 2.3A for an illustration). Such learning iterations may

repeat, allowing the individual to adopt behaviors further away from its innate

one, resulting in a modification of its effective fitness accordingly (although its

genotype remains unchanged).

We first consider an ideal deterministic learning model, where each individ-

ual repeatedly employs such deterministic hill-climbing learning iterations until

it reaches the nearest local-optimum and no further improvement of its effective

fitness is possible. As demonstrated in Figure 2.3B, in ideal learning all genetic

configurations in the region forming the basin of attraction of a given local opti-

mum will eventually acquire the same effective fitness value, equal to the innate

fitness of the local optimum, totally suppressing selection pressures within each

such region. In the one-dimensional case, ideal learning transforms each given

consecutive pair of descending and ascending intervals in the innate fitness land-

scape into a single step function in the effective fitness landscape, whose height

is equal to the difference between the extents of this descent and the consequent

ascent (Figure 2.3B). The drawdown characterizing the effective fitness landscape
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Figure 2.3: The effect of deterministic learning on the fitness landscape. (A)
An individual with genotype configuration x and innate fitness value F (x) may
acclimate by learning (illustrated here as a simple gradient ascent process) and
gain a fitness value of F (x + ∆x). As the genotype of this individual remains
unchanged, the effective fitness value Fefc(x) = F (x + ∆x) is applied to x. (B)
The innate fitness function (solid line) and the effective functions obtained with
partial learning, i.e., after a limited number of hill-climbing iterations (dotted
line), and with ideal learning (dashed line). In the ideal learning scheme all
configurations in the basin of attraction of a given local optimum (e.g. genotypes
x1 and x2 in the interval [B, D]) acquire the same effective fitness value, that of
the local optimum (C).
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Figure 2.4: The effect of ideal deterministic learning on the fitness landscape
drawdown. The generalized Schwefel function described in Appendix A.3 is used
to generate two-dimensional fitness landscapes with varying ruggedness (tuned
via the Cs parameter whose higher values denote increased levels of ruggedness).
Ideal learning is then applied to produce the corresponding effective fitness land-
scape. The Principal-Pathway drawdown calculated for each landscape is illus-
trated. Evidently, the drawdown induced by the effective fitness is significantly
smaller (note the logarithmic scale) than that induced by the innate fitness.

is hence smaller (or equal, in the worst case) than that induced by the original,

innate fitness landscape (see also Figure 2.4). As demonstrated above, a smaller

drawdown value implies a shorter first-passage time, making the beneficial effect

of this learning scheme evident.

The mathematical analysis presented above in Section 2.2 can account for

the seemingly contradictory findings of previous studies concerning simple fitness

landscapes (Anderson, 1995; Ancel, 2000; Dopazo et al., 2001), in which learning

was found to hinder the evolutionary process. While the evolutionary rate in

multipeaked landscapes is dominated by the landscape drawdown, in the simple

unimodal scenario, no drawdown exists (R = 1), and consequently the marked

beneficial effect of learning demonstrated above is absent. In terms of our model,

in such single peaked landscapes, the evolutionary process is scaled down to a

simple random walk within a positive slope interval. Since learning decreases

the slope of the fitness function (causing q
p

to approach unity), our model clearly

shows (see Appendix A.1, Example 2, concerning a constant environment) that

learning would slow down the convergence rate, as Anderson (1995) and Ancel
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(2000) have indeed found. In particular, learning schemes that cancel all se-

lection pressures and produce a totally flat effective landscape (as is the case

in ideal learning) result in a random drift process with quadratic first-passage

times, markedly slower than the linear first-passage time in the innate single-

peaked landscape (see Appendix A.1, Example 1 and Example 2). It is only

in a multipeaked landscape (Wright, 1932; Kauffman and Levin, 1987; Kauff-

man, 1993; Korona et al., 1994; Burch and Chao, 1999; Lenski et al., 1999; Fong

et al., 2005), where the overall evolutionary rate is dominated by the exponential

passage time in the negative selection regions, that the beneficial effect of ideal

learning is demonstrated.

When learning “resources” are limited (e.g. learning is bounded by a certain

cost) and individuals employ only a limited number of hill-climbing iterations, a

partial plastic mode is obtained rather than ideal learning model. In this mode,

not all genetic configurations in the basin of attraction of each local optimum will

inevitably gain the same effective fitness value. Individuals with innate genetic

configurations farther from the local optimum configuration do improve through

learning (and gain a higher effective fitness value), but may fall short of reach-

ing the local optimum’s exact fitness level. The effective fitness landscape forms

an intermediate state between the plastic and non-plastic modes, including both

intervals with constant fitness and intervals with positive or negative slopes (Fig-

ure 2.3B). Clearly, a partial learning scheme still reduces the extent of the innate

landscape drawdown (and hence, will still accelerate evolution), though it does

not cancel them altogether. It is thus expected that this learning mode will yield

an intermediate convergence time, progressing slower than the ideal plastic mode,

but still faster than the non-plastic one.

These effects of deterministic learning are validated numerically (see Ap-

pendix A.3 for the simulation details). The mean first-passage time of each

genetic configuration x (i.e., the expected time to first hit x starting at 0) is

illustrated in Figure 2.5B. The curves clearly agree with the results of our anal-

ysis. Figure 2.5C demonstrates the average innate fitness value of the evolving

individual as a function of generation of the evolutionary process. Evidently,

individuals evolving in the plastic mode converge much faster to the global op-

timum and gain higher fitness values. Although learning individuals using ideal

learning do not converge to the exact global optimum, they successfully reach

its basin of attraction and possess higher innate fitness values than non-plastic
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individuals who tend to get trapped in remote local optima. Examining the effect

of partial learning, we find, as expected, that this mode yields an intermediate

convergence time, progressing slower than the plastic mode, but still faster than

the non-plastic one (Figure 2.5B). Furthermore, as this form of learning does

not entirely suppress the selection pressures in each optimum domain, it allows

individuals that hit the global optimum basin of attraction to converge closer to

the exact global optimum configuration, resulting in overall better average innate

fitness values than those obtained with ideal learning (Figure 2.5C).

2.3.3 Stochastic Learning

Both the ideal and the partial learning schemes examined above embody two

basic characteristics: locality and accuracy; learning was assumed to exploit only

local information about the fitness landscape on which it operates, and to do so

with complete accuracy. It is these two features that guarantee the preservation

of extrema domains in the effective landscape. However, the lack of complete

environmental data, sensory input noise, imperfect information processing and

nondeterministic decision making, all make a stochastic learning process more

plausible as a model of learning in biology. Yet, since stochastic local search

schemes are not bound to take the steepest ascent route, and can potentially

discover remote local optima, the effective fitness function they yield may have a

different regional structure than that of the original innate fitness. For example,

in an extreme scenario, a stochastic learning algorithm may allow any innate

genetic configuration to successfully reach the global optimum solution, totally

suppressing genetic selection pressures. In this scenario the evolutionary process

turns into a random drift, which, as was demonstrated in Appendix A, yields a

quadratic first-passage time.

To study the effects of stochastic learning, we use a simple variation of our

model, where the hill-climbing learning algorithm is replaced with a simulated

annealing (SA) optimization process (Kirkpatrick et al., 1983) (see Appendix B

for details). Clearly, stochastic learning does not guarantee a consistent fitness

gain each time learning is applied. Consequently, the effective fitness value as-

signed to each genetic configuration varies from one learning process to the other

and a deterministic effective fitness function cannot be explicitly constructed in

advance. Yet, examining the characteristics of the average effective fitness func-

tion constructed by this stochastic scheme (see, for example, Figure 2.7B), it is
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Figure 2.5: The effect of ideal deterministic learning (IDLL), partial determin-
istic learning and stochastic learning on the evolutionary process in the one-
dimensional case. (A) A one-dimensional innate fitness function was defined
on the interval [1, 200] as a sum of several Gaussian functions, yielding a continu-
ous, multipeaked function F (x) (solid line). Various plasticity schemes were then
applied to produce the corresponding effective fitness functions (see Appendix B
for more details). (B) The first-passage time of each genetic configuration x (i.e.,
the average time to first hit x). Each curve represents the average result of 100
runs for the deterministic learning simulation and 10 runs for stochastic learn-
ing simulation. In the plastic mode, using a deterministic learning scheme, all
100 simulation runs hit the global optimum within less than 16,200 generations.
In the non-plastic mode, although the linear expected first hitting time in the
positive slope intervals yields a fast progress, the exponential behavior in the
negative slope intervals dominates the dynamics of the random walk and hinders
the evolutionary process. Out of 100 simulated evolutions, each running for a
maximum of 200,000 generations, 16 never hit the third local optimum (x = 97)
and 67 failed to hit the forth (x = 130). (C) The mean innate fitness value as
a function of generation. The standard deviation of the non-plastic mode and
plastic mode with ideal deterministic learning is also illustrated.
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clear that the drawdown induced by the average effective landscape is smaller

than that of the original innate landscape.

Numerical simulations of an evolving population applying stochastic learning

(where the effective fitness is appropriately evaluated repeatedly for each individ-

ual in each generation) validate that this learning scheme indeed accelerates the

evolutionary process. Evidently (Figure 2.5B-C), also with a stochastic learn-

ing paradigm, learning individuals converge faster and gain significantly higher

innate fitness values than those evolving in the non-plastic mode, obtaining val-

ues similar to those obtained with deterministic learning. Furthermore, it is

shown that stochastic learning not only accelerates evolution in comparison to

the non-plastic mode, but yields superior evolutionary convergence rates even

in comparison to those obtained in the deterministic learning scheme examined

above. The superiority of this scheme can be attributed to the resulting effec-

tive fitness landscape which is smoother (on average) than the one produced by

a deterministic scheme. This can allow individuals near the boundary between

basins of attraction to stochastically converge to either of the two adjacent local

optima.

It should be noted that in the extreme case, stochastic learning can produce

a totally flat effective fitness landscape, suppressing all selection pressures, even

in a multipeaked landscape. However, while the quadratic first-passage time

induced by random drift on a flat landscape hinders evolution in comparison to

the linear time on a single peaked landscape, it is still superior to the exponential

first-passage time expected on a multipeaked landscape.

2.3.4 Random Phenotypic Variation

The learning schemes discussed above represent a directed model of plasticity,

aiming at increasing the individual effective fitness. However, phenotypic plastic-

ity may also take the form of increased phenotypic variation (or developmental

noise) in response to environmental fluctuations (Gavrilets and Hastings, 1994).

Although biologists often refer to phenotypic plasticity as a beneficial response to

the environment (rather than a random variation), here, as in Ancel and Fontana

(2000), we wish to examine the effect of a random phenotypic flexibility scheme

. This form of plasticity may be more common in molecular evolution, wherein

a certain genotype may realize a range of phenotypic configurations according to

the microenvironemntal context.
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Figure 2.6: The effect of random phenotypic variation with ∆d = 15 on the
evolutionary process. Each curve represents the average result of 100 simulation
runs. (A) Mean first-passage time as a function of the genetic configuration x.
The results obtained under the ideal deterministic learning scheme are depicted
for comparison. (B) The mean and standard deviation of the innate fitness value
as a function of generation.

Such random perturbations are clearly not necessarily in the direction of im-

proved fitness. However, assuming some correlation between the phenotypic and

genotypic spaces, on average, genotypes assigned with low innate fitness values

will gain more by these perturbations than genotypes with high innate fitness

values. In the extreme case, genotypes located in a local minima of the fitness

landscape can only gain higher effective fitness by realizing phenotypes of neigh-

boring configurations, while genotypes located on local maxima will inevitably

gain lower effective fitness. These dynamics, although stochastic, lead to a re-

duction in the fitness landscape drawdown, and hence, according to our analysis,

accelerate evolution. Applying a simple model of genetic variation, where each

genotype “develops” into a phenotype associated with a randomly selected neigh-

boring genetic configuration within a predefined range, ∆d (see Appendix B for

more details), we validate the beneficial effect of this plasticity scheme (Fig-

ure 2.6).

A simple example of such a plasticity scheme can be demonstrate in the RNA

secondary structure. While the minimum free energy (MFE) secondary structure

of an RNA sequence defines a simple mapping from genotypes to phenotypes, in

practice, an RNA molecule may fold into a wide range of secondary structure

configurations, providing that the energy barriers are sufficiently small. These
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phenomena can be conceived as the RNA equivalent of phenotypic plasticity or

developmental noise (Ancel and Fontana, 2000). Furthermore, as demonstrated

by Ancel and Fontana (2000), there is a significant correlation between the reper-

toire of thermodynamically accessible configurations and genetically accessible

configurations (a phenomenon they term plastogenetic congruence). This corre-

lation implies that RNA molecules that make such thermodynamic transitions can

be described as effectively realizing MFE structures associated with neighboring

genotypic configurations. Interestingly, examining whether phenotypic plastic-

ity expedites the evolutionary discovery of new structures in RNA, Ancel and

Fontana (2000) find that no such expediting occurs due to intrinsic properties of

the RNA genotype-phenotype map. Specifically, the high neutrality incorporated

in the RNA genotype-phenotype map and its organization make the beneficial

effect of plasticity restricted to relatively small regions in the genotypic space.

Consequentially, the benefit gained by plasticity is negligible compared to the

time it takes to discover these regions in the first place.

2.3.5 Varying Learning Rates

Evidently, different plasticity schemes yield different dynamics of the evolution-

ary process and result in different convergence rates. The number of phenotype

acclimation iterations employed during life or the phenotypic variation range

(which will both be referred to here as the plasticity rate) may also influence the

convergence rate and the stability of the evolutionary process, as was demon-

strated by the favorable effects of the partial learning scheme. To further explore

and compare the effect of these learning schemes and in particular the effect of

varying plasticity rates, an additional set of simulations was carried out. Fig-

ures 2.7A-C illustrate the effective fitness functions constructed by each scenario

that was tested. To reduce the long computation time in stochastic learning

simulations, the mean effective fitness was used as a constant effective fitness

landscape, approximating a genuine stochastic learning paradigm.

Two measures were examined for each scenario: The overall convergence time,

which was taken as the first-passage time of the global optimum (x = 193), and

the genetic stability of the evolving individuals that was measured as the aver-

age genetic deviation from the global optimum configuration throughout 1000

generations following the first-passage time. As shown in Figure 2.7D, the best

convergence time for deterministic learning is obtained with 10 learning iterations.
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E. Stochastic Learning

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

4.4

4.8

x 10
4

M
ea

n 
fir

st
 h

itt
in

g 
tim

e

  1
00

 ite
r

  2
00

 ite
r

  4
00

 ite
r

 1
00

0 
ite

r

 2
00

0 
ite

r

 5
00

0 
ite

r

10
00

0 
ite

r 0

1

2

3

4

5

6

7

8

9

10

11

12

M
ea

n 
ge

ne
tic

 d
ev

ia
tio

n
fr

om
 th

e 
gl

ob
al

 o
pt

im
um

First hitting time
Genetic deviation

F. Phenotypic Variation
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Figure 2.7: The effect of various plasticity schemes and varying plasticity rate
on evolution. (A-C) The average effective fitness functions resulting by varying
numbers of deterministic and stochastic learning iterations and by varying pheno-
typic variation range. Employing more than 14 deterministic learning iterations
results with an effective fitness similar to the one obtained by ideal learning.
The curves illustrated in Figure C represent the average of 50,000 runs. (D-F)
The average convergence rate, measured as the mean first-passage time of the
global optimum (solid line) and genetic stability (dashed line) obtained for vary-
ing plasticity rates. Most simulation runs using less than 6 deterministic learning
iterations did not converge to the global optimum.
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There is also a clear tradeoff between the convergence time and the genetic sta-

bility of the resulting evolutionary process. Figure 2.7E illustrates the results for

stochastic learning schemes with a varying number of SA iterations. Evidently,

a low number of stochastic learning iterations results in faster convergence rates

than those obtained with deterministic schemes and still yields relatively stable

genetic solutions. Only when the learning process employs a considerably large

number of stochastic iterations it diverges from the original structure of the in-

nate fitness function (see Figure 2.7B), reducing dramatically the evolutionary

selection pressures and consequently reducing the genetic stability of the evolving

individuals. A clear tradeoff between the convergence time and the genetic stabil-

ity is also demonstrated in the phenotypic variation experiments (Figure 2.7F).

Applying a large variation (e.g., ∆d = 15) results in a fast convergence rate,

comparable to that obtained by deterministic learning, but dramatically reduces

the genetic stability.

2.4 Numerical Extensions of the Random Walk

Model

While the random walk model presented above allows for a rigorous analysis of

first passage times, there are a few extensions that make this model more bio-

logically plausible. In particular, we wish to examine whether the possibility to

stay in the same genetic configuration over several generations and the trans-

formation from the fitness landscape values to fixation probabilities affect the

resulting dynamics. The analytical treatment of the behavior of the RW model

with these extensions turns to be a difficult challenge, and hence these extensions

are examined numerically in this section.

2.4.1 Random Walk with Static Periods

As the RW model presented above assumes that in each point in time the walk

process takes either a +1 or a −1 step, our measure of first passage time can be

interpreted as measuring the number of mutation events required to reach the

global optima. However, in practice, the population may stay in the same genetic

configuration for many generations. Hence, if we wish to measure the convergence

time in number of generations, we should also allow the walk process to stay in

the same configuration with some probability.
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Figure 2.8: Numerical extensions of the random-walk model. (A) First-passage
times for each genetic configuration using a random walk model with static pe-
riods. (B) First-passage times for each genetic configuration using Kimura’s
fixation probabilites.

As demonstrated in Figure 2.8A, introducing this extension to the model

(see Appendix B for the simulation details) does not significantly change the

resulting dynamics, and in particular, preserves the superiority of the plastic

mode vs. the non-plastic mode. Apparently, although the probability to stay

in the same genetic configuration is higher in neutral regions of the landscapes

(which are abundant in the landscape induced by ideal plasticity) than in positive

selection regions, the overall convergence time is still dominated by the slow

exponential time it takes to cross negative selection regions (and, particularity,

the fitness drawdown). The main effect of this extension is manifested by an

overall, relatively constant delay in the time to reach each genetic configuration

in comparison to the basic model.
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2.4.2 Random Walk with Kimura’s Fixation Probabilities

To further relax some of the differences between our model and traditional popu-

lation biology models, we apply Kimura’s theory for population dynamics on neu-

tral (or nearly neutral) landscapes (Kimura, 1983). Specifically, we use Kimura

fixation probabilities rather than the Boltzmann scaling (see also Appendix B) to

determine the RW probabilities. Under this extension, our RW model is closely

related to common evolutionary dynamics models on nearly neutral landscapes,

taking also the population size into account. Moreover, assuming that the mu-

tation rate is slow (and hence, each mutation becomes either fixated or extinct

before the next mutation arises), the first passage time measure, EN
0 , indicates

the number of mutations that are required to appear until the population fixates

on the landscape’s global optimum and can be now easily translated to the ex-

pected number of generations simply by multiplying EN
0 by the mutation rate

ν. As in the previous section, this extension allows for the population to stay in

the same genetic configuration over several generations if none of the neighboring

mutations is fixate.

As can be seen in Figure 2.8B, using Kimura’s probabilities dramatically

slows down the entire process (note the first-passage time scale), mainly due

to the significantly smaller probabilities of a neutral (p = 1/2Ne) or deleterious

mutation to fixate. Clearly, in this model, fixation of a slightly beneficial mutation

is markedly faster than that of a neutral mutation. Yet, as in our previous

analysis, the probability of fixation of a slightly deleterious mutation becomes

infinitesimally (exponentially) small as the population size increases and hence

still dominates the overall convergence time, resulting in the superiority of the

plastic mode over the non-plastic one.

2.5 Discussion

This chapter focuses on the effects of phenotypic plasticity on the evolutionary

convergence rate in stationary environments. We use random walk theory to

derive a measure for the rate of evolution on arbitrary multipeaked fitness land-

scapes, and demonstrate that the convergence rate is dominated by the landscape

drawdown. Examining various phenotypic plasticity schemes we find that these

schemes decrease the landscape drawdown and hence, accelerate evolution. These

findings introduce a rigorous quantitative confirmation for the common hypothe-
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sis stating that phenotypic plasticity expedites evolution by smoothing the fitness

landscape and identify the origins of this phenomenon. Our analysis provides a

measure for both the convergence rate bottleneck induced by the landscape draw-

down, and the benefit gained by smoothing the landscape and reducing the extent

of this drawdown.

Our findings suggest two fundamental principles that affect the interaction

between phenotypic plasticity and evolution. First, as the benefit of plasticity

stems from its capacity to smooth the fitness landscape, this effect will be revealed

only in multipeaked landscapes wherein the evolutionary rate is dominated by the

landscape drawdown. Conversely, if selection takes place only within the domain

of a simple fitness function that does not include multiple local optima, plastic-

ity hinders the evolutionary process as was also demonstrated in previous studies

(Anderson, 1995; Ancel, 2000). Second, our analysis suggests that plasticity has a

beneficial effect on evolution when genotypes with low innate fitness values (e.g.,

individuals at local fitness minima) gain more through phenotypic plasticity than

genotypes with high innate fitness values (e.g., with local maxima configurations).

These dynamics are governed mainly by the correlation between the genotypic

and phenotypic spaces (determined by the genotype-phenotype mapping). As

demonstrated in Section 2.3.4, when such a correlation exists, phenotypic mod-

ifications due to plasticity are analogous to perturbations in the genetic space,

and consequently plasticity yields, on average, a higher gain for those individuals

whose genotypes are located on local fitness minima.

Mayley (1997) discussed the effects of learning on evolution in a rugged land-

scape, arguing that such settings may give rise to two competing effects: A

guiding effect, helping evolution to detect individuals located near superior lo-

cal optima, and a hiding effect where learning suppresses the selection pressures

within each local optima basin of attraction. Our analysis demonstrates that

in this scenario, the guiding effect outweighs the hiding effect, resulting with an

overall acceleration of the evolutionary process.

Plasticity may also have associated costs, either direct, due to the energy

and time it takes to learn a new behavior, or indirect, due to the delay until

an individual can exhibit a successful acquired behavior. Learning costs have

been largely discussed in the literature of the interaction between evolution and

plasticity. Mayley (1996) showed that the selection pressures for acquired traits

to become genetically assimilated depend on the trade-off between learning costs
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and learning benefits. Examining the evolution of language, Munroe and Can-

gelosi (2002) demonstrated that when language learning costs are high, agents

genetically assimilate explicit properties of the specific language they are exposed

to. In the context of our model, associated plasticity costs can clearly affect the

resulting fitness gain and consequently, the effective fitness landscape. Assuming

a simple model of learning costs, where cost is proportional to the fitness gained

by learning (or to the extent of the difference between the innate and acquired

configurations), two scenarios should be considered: If the cost of learning is

higher than the learning gain, individuals in the plastic mode will in fact have

a lower fitness than individuals in the non-plastic mode. Furthermore, individu-

als at local fitness minima will lose more by learning that those located at local

maxima configurations. Hence, in this scenario, the drawdown associated with

the effective fitness landscape will be higher than that of the innate landscape,

hindering the evolutionary process. However, this form of learning is clearly not

adaptive and in most cases would not evolve. In the second scenario, when learn-

ing costs are lower than the fitness gained by learning, learning will still decrease

the extent of the landscape drawdown (as demonstrated, for example, in the par-

tial deterministic learning model), but this decrease will be smaller than that

associated with a cost-free learning. Hence, in general, learning costs reduce the

beneficial effect of plasticity but do not cancel it entirely.

Clearly, the fixed landscape, the one-to-one genotype/phenotype mapping and

the specific phenotypic plasticity schemes examined in this study are a simplifica-

tion of the dynamics that take place in natural systems. Living organisms incor-

porate a complex developmental process that may disturb the correlation between

the phenotype and genotype spaces (Downing, 2004) and apply diverse and so-

phisticated plasticity methods. Moreover, the random walk model applied in this

study restricts evolution to ±1 increments, corresponding to small mutations.

However, real mutations can come in a wide variety of increments, markedly

influencing the evolutionary trajectory. Specifically, large mutations can help

the evolutionary process to cross fitness valley barriers, reducing (though, most

probably, not canceling altogether) the deleterious effect of the fitness landscape

drawdown. The effect of such mutations on the evolutionary dynamics in innate

vs. effective fitness landscapes is of much interest and may vary with the exact

structure of the landscape. Unfortunately, characterizing the structure of fitness

landscapes of biological systems and the dynamics of biological plasticity is still
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an open question. We have thus focused on a simple mathematical model, with

fully correlated landscapes, allowing us to explicitly construct and examine the

resulting effective fitness function and to derive a rigorous, quantitative analy-

sis of the expected convergence rate. However, the approach presented in this

chapter and the mathematical analysis of first-passage times can be utilized to

examine the effects of additional plasticity paradigms and landscapes structures,

as long as the effective fitness landscapes can be evaluated.

Future research may be able to predict scenarios in which phenotypic plas-

ticity will be favored by evolution. In particular, while the exact structure of

the fitness landscape is usually hard to characterize, there are cases where multi-

peaked landscapes are expected. For example, whenever the evolutionary process

is required to optimize multiple objectives with a certain trade off function, mul-

tiple local optima usually exist (e.g., Oksanen and Lundberg, 1995). In such

cases, phenotypic plasticity, being a mechanism that expedites the discovery rate

of new optima, is valuable. We thus believe that increased phenotypic variation

should be correlated with the existence and abundance of multiple optima.

An example of a biological experiment designed to directly examine the effect

of learning on evolution has recently been presented (Mery and Kawecki, 2004).

In this exciting study, populations of Drosophila melanogaster were exposed to

various selection regimes concerning preference for oviposition substrate with and

without the ability to use aversion learning. The results of this study showed that

learning may evolve even in a stationary environment (in contrast to the com-

mon argument that learning should be favored only in a changing environment).

However, examining whether learning ability affects the evolution of the innate

component, they found that learning facilitated evolution in one direction of se-

lection while hindering it in the other, leaving the controversy concerning the

effect of learning on evolution unresolved.

Evidently, the dynamics governing the evolution of plastic individuals are still

far from being completely characterized, much less understood. The variety of

phenotypic plasticity mechanisms found in biological systems and their complex-

ity render their study a challenging task. In this chapter, we have utilized a

simple model to provide a quantitative analysis of these complex phenomena.

While acknowledging its limitations, we believe that such a framework can serve

as a theoretical basis for studying issues concerning the interplay between phe-

notypic plasticity and evolution.
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One of the common and most exciting classes of phenotypic plasticity mech-

anisms is social learning, where learning takes place within a social situation and

individuals learn by observing other members of the population. In the context

of the interaction between learning and evolution, having other individuals in

the population influence the behavior of a plastic individual may have profound

effects on the evolutionary dynamics. For example, while it was shown that de-

terministic learning smooths the fitness landscape, clearly, the local nature of

this learning scheme, wherein plastic individuals can perform only slight behav-

ioral modifications in each learning iteration, bounds the effect of this learning

process. In particular, the acquired behaviors are limited to those present in

the local basin of attraction. Clearly, a less local learning strategy may fur-

ther smooth the fitness landscape and further expedite the evolutionary process

(as was demonstrate for stochastic learning). A social learning scheme, in which

learners can examine the success (fitness) of other members of the population and

can evaluate a wide range of behaviors, including those that considerably differ

from their current behavior, has this exact property. To some extent, the exper-

iments presented in Section 2.3.4 can be interpreted as modeling such a learning

paradigm. Yet, a more direct model, integrating a parameter representing the

population diversity and allowing a plastic individual to sample any improved be-

havior within this behavioral range, can provide valuable insights concerning the

effect of social learning on evolution. We believe that such a learning scheme will

further accelerate the rate of evolution in an analogous manner to that shown in

Section 2.3.4. Furthermore, an improved model can also include a “population”

of random-walkers and apply various selection operators to better encapsulate

the range of behaviors present in an evolving population that can be observed by

a social learner .

Acknowledging the significant influence of social learning on evolution, we

turn in the rest of this dissertation to examine the effect of this class of learn-

ing mechanisms. However, while the social learning models discussed above can

provide valuable insights concerning the interplay between learning and evolution

(as was demonstrated in this chapter), such models still form a relatively abstract

representation of that interplay, lacking many of the properties characterizing real

instances of social learning. In the next chapter, we hence turn to examine one

specific mechanism of social learning, namely, imitative learning. In terms of its

potential effect on evolution, imitation presents far more complicated dynamics
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as the learning process outcomes depend not only on the interaction between the

individual and its environment but also on the state of other members of the

evolving population. We resort to an Evolutionary Autonomous Agents (EAA)

framework, facilitating an examination of the effect of a plausible model of imita-

tive learning. Such an EAA model will also be utilized later (Chapter 4) to study

the evolutionary origins of the mechanisms underlying learning by imitation.
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Chapter 3

Enhancing Autonomous Agents
Evolution with Learning by
Imitation

Based on:

Elhanan Borenstein and Eytan Ruppin
Enhancing autonomous agents evolution with learning by
imitation, Journal of Artificial Intelligence and the Simulation of
Behaviour (AISBJ), 1(4), 335-347, 2003.

In the previous chapter we have shown that phenotypic plasticity can accel-

erate the evolutionary process and have identified the origins of this beneficial

effect. To allow a rigorous analysis of the effect of plasticity we have confined

our study to plasticity schemes in which the resulting effective fitness landscape

can be explicitly constructed. However, the various plasticity and learning mech-

anisms found in nature are often significantly more complex, preventing a full

mathematical analysis. One such exciting learning mechanism is learning by

imitation.

The main motivation for studying the effect of learning by imitation on evo-

lution is twofold (see also Section 1.2.2). First, imitation is an effective and

robust way to learn new traits by utilizing the knowledge already possessed by

others. Although the existence of true imitative behavior in the animal kingdom

is still debated, social learning can be found in a variety of species providing

clear benefits over other forms of learning (Kawamura, 1963; Whiten and Ham,

1992; Zentall, 2001). Second, in the context of evolutionary computation and
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autonomous agents’ evolution, the inherent diversity of the agents’ population

makes learning by imitation a naturally applicable mechanism. Moreover, while

other forms of supervised learning may not be a viable option in many agent en-

vironments due the the lack of training data (or Oracles), learning by imitation is

almost always a valid option, using other members of the population as teachers.

In contrast to simple phenotypic plasticity mechanisms, an imitative learn-

ing process depends not only on the interaction between the individual and its

environment but also on the state of other members of the evolving population,

making the interaction between this learning scheme and evolution far more com-

plex. In this chapter, we hence focus on the effect of learning by imitation on the

evolutionary process, utilizing a framework of autonomous agents. We present a

set of experiments, where lifetime learning by imitation was used to adapt indi-

viduals that also go through an evolutionary process. The results are compared

with those of a simple evolutionary process, where no lifetime learning is em-

ployed, and with those of an evolutionary process that employs a conventional

(supervised) mechanism of learning.

The remainder of this chapter is organized as follows. We begin in Section 3.1

with a brief overview of previous work and the concept of combining imitative

learning with evolution. In Section 3.2 we present the imitation enhanced evolu-

tion (IEE) model in detail. To validate the effectiveness of our model we introduce

in Section 3.3 a set of benchmark tasks and present the experimental results in

Section 3.4. The chapter concludes with a short discussion concerning the re-

sults obtained. The experiments and results presented in this chapter have been

published in Borenstein and Ruppin (2003a) and Borenstein and Ruppin (2003b).

3.1 Combining Learning by Imitation and Evo-

lution

As discussed in the previous chapter, various simulation studies of the interaction

between lifetime learning and evolution (Hinton and Nowlan, 1987; Nolfi et al.,

1994; Nolfi and Parisi, 1997; Floreano and Mondada, 1996) have shown that

learning can be utilized to guide and enhance the evolutionary process. While

the mathematical analysis presented in Chapter 2 provides a rigorous account for

this effect, an intuitive explanation for the beneficial effect of learning on evolution

can also be introduced. As illustrated in Figure 3.1, learning can be conceived
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as a simple mechanism that reveals the innate potential of each individual in the

population. One may consider lifetime adaptation as a local search process that

can enhance the global search (evolution) by determining which configurations lie

in the vicinity of the global optimum solution and are thus worthwhile retaining

in the population (as they have a better chance to produce successful offspring).

Figure 3.1: An illustration of the effect that lifetime adaptation may have on
the genetic evolutionary process. Both agents start with the same innate fitness
value (indicated by the black dots). Applying lifetime adaptation (illustrated as
a simple hill climbing process) will result in the selection of agent A which is
closer to the optimal solution. Inspired by Nolfi and Floreano (1999)

The studies cited above have employed various sources of training data for

learning ranging from external oracles, through regularities in the environment,

to “self-generated” teaching data. There is, however, an additional source of

training data; one which is naturally available within the evolutionary paradigm

- the knowledge possessed by other members of the population. Such knowledge

can be harnessed to improve the evolutionary process in the form of learning by

imitation. Extending these studies further, we hence wish to explore learning by

imitation as an alternative to conventional supervised learning and to apply it as

a tool to enhance evolution. We will label this framework as imitation enhanced

evolution (IEE). The hypothesis underlying the study presented in this chapter

is that learning by imitation, may be sufficient to reveal the innate potential of

the population members.

Learning by imitation has already been applied by researchers in the fields

of artificial intelligence and robotics in various experiments. Hayes and Demiris

(1994) presented a model of imitative learning to develop a robot controller. Bil-

lard and Dautenhahn (1999) studied the benefits of social interactions and imi-
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tative behavior for grounding and use of communication in autonomous robotic

agents. For an up-to-date introduction to work on imitation in both animals and

artifacts see the cross-disciplinary collection (Dautenhahn and Nehaniv, 2002b).

Furthermore, various frameworks that study the interaction between cultural

transmission and evolution have already been well established (e.g. Boyd and

Richerson, 1985; Cavalli-Sforza and Feldman, 1981; Laland, 1992). Gene-culture

coevolution accounts for many adaptive traits (Feldman and Laland, 1996). Stud-

ies and simulations of the evolution of language (Ackley and Littman, 1994; Kirby

and Hurford, 1997; Arbib, 2002) assume, by definition, some sort of cultural trans-

mission.

It is important to realize though, that in contradistinction to these studies, the

framework presented in this chapter does not employ cultural evolution. In fact,

we preclude culture from evolving in the first place. Following in the footsteps of

the studies of the interaction between learning and evolution discussed above, we

avoid any direct form of acquired-knowledge transfer between generations either

genetically or culturally. We hence work in a strict Darwinian framework, where

lifetime adaptations are not directly inherited (although, they may be genetically

assimilated through the Baldwin effect, 1896) and may affect the evolutionary

process only by changing the individual’s fitness, and thus the number of its off-

spring. In terms of cultural transmission (see Boyd and Richerson, 1985, for a

detailed definition), we allow horizontal transmission alone (where individuals of

the same generation imitate each other) and exclude any form of vertical trans-

mission (where members of the current generation transmit their knowledge to

members of the next generation). Numerous field studies suggest that at least

in nonhuman societies, horizontal transmission is far more common than verti-

cal transmission (Laland, 1992). Furthermore, to prevent any form of cultural

evolution from taking place, within each generation, only innate behaviors are

imitated; that is, we prevent behaviors acquired by imitation from being imitated

again by another member (see also the discussion in Section 3.5).

Within this framework, we focus on the effects that imitation may have on

the genetic evolutionary process, starting with the most basic question: Can

imitation enhance the evolution of autonomous agents (in the absence of verti-

cal transmission), in an analogous manner to the results previously shown for

other forms of learning, and how? It should be noted that the contribution of

horizontal transmission to evolution is not obvious; while in late stages of the
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evolutionary process the best individuals in the population may already possess

sufficient knowledge to approximate a successful teaching process, in early stages

of the process it may be the case of “the blind leading the blind”, resulting in a

decrease of the population’s average fitness.

A simple model that fits this framework has been studied before by Best

(1999). He demonstrated an extension of the computational model presented in

Hinton and Nowlan (1987), introducing social learning (namely imitation) as an

additional adaptive mechanism. The reported results exemplify how horizontal

cultural transmission can guide and accelerate the evolutionary process in this

simplified model. Best has also demonstrated how social learning may be superior

to conventional learning and yield faster convergence of the evolutionary process.

Best’s model, however, has several limitations. The evolutionary fitness func-

tion (which is the one used in Hinton and Nowlan, 1987) represents a worst-case

scenario where only the exact solution has a positive fitness value. There is no

probable path that a pure evolutionary search can take to discover this solution.

As we have demonstrated in Chapter 2, the structure of the fitness landscape

plays a crucial role in the interplay between learning and evolution. It is only in

the biologically plausible case of multipeaked landscapes that the true effect of

learning can be revealed. Additionally, in Best’s model, there is no distinction

between genotypes and phenotypes and thus no real phenotypic adaptation pro-

cess. Imitation is carried out simply by copying certain genes from the teacher’s

genome to the student. A complex mapping from genotypes to phenotypes is one

of the important factors determining the characteristics of the fitness landscape

and consequently, the effect of learning on evolution. We hence wish to generalize

this framework and study the effects of learning by imitation in a more realistic

scenario of autonomous agents evolution (see Ruppin, 2002, for a general review).

A framework based on such evolutionary autonomous agents allows for a simple

test-bed for studying learning by imitation and provides a natural mechanism

for genotype-phenotype mapping that can produce nontrivial fitness landscape

structures.

The definition of imitation in the literature varies considerably (Billard and

Dautenhahn, 1999), but for the purpose of this study we use imitation (or learning

by imitation) in the sense of having an individual (student) being able to match

its behavior to that of a demonstrator (teacher). In particular, using autonomous

agents to model the population members, this form of imitation is implemented
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by using the teacher’s output for each sensory input as the target output in a

back-propagation training algorithm. In this study we focus on the simple case

where the learning (imitation) task is similar to the evolutionary task. This case

most probably does not closely represent the imitation processes found in nature.

Lifetime adaptation in humans and other cultural organisms operates on high-

level traits which are not coded directly in their genome. However, we believe

that this simple scenario can provide valuable insights into the roots of imitative

behavior. We further discuss this topic in Section 3.5.

3.2 The Model and Experimental Setup

A haploid population of agents evolve to solve various tasks. Each agent’s neuro-

controllers is a simple feed-forward (FF) neural network (Hertz et al., 1991). The

initial weights of the network synapses are coded directly into the agent’s genome

(the network topology is static throughout the process). The initial population is

composed of 100 individuals, each assigned randomly selected connection weights

from the interval [-1,1]. The innate fitness of each individual is determined by its

ability to solve the specific task upon birth. Within the pure evolutionary process,

the innate fitness will determine the reproductive probability of this individual.

Each new generation is created by randomly selecting the best agents from the

previous generation according to their innate fitness, and allowing them to repro-

duce (Mitchell, 1998). During reproduction, 10% of the weights are mutated by

adding a randomly selected value from the interval [-0.35,0.35]. The genomes of

the best 20 individuals are copied to the next generation without mutation.

When conventional supervised learning is applicable (i.e., an explicit oracle

can be found) we also examined the effect of supervised learning on the evolution-

ary process. Each individual in the population goes through a lifetime learning

phase where the agent employs a back-propagation algorithm (Hertz et al., 1991),

using the explicit oracle as a teacher. Its fitness is then reevaluated to determine

its acquired fitness (i.e., its fitness level after learning takes place). In order

to simulate the delay in fitness acquisition associated with acquired knowledge,

we use the average of the innate and acquired fitness values as the agent’s fi-

nal fitness value. This delay is a simple manifestation of the indirect costs of

learning (in comparison to innate, genetically encoded, traits), stemming from

the non-optimal behavior displayed by the individual until it acquires a successful
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behavior by learning. This averaged fitness value is then used to select the agents

that will produce the next generation.

In the IEE paradigm, agents do not use conventional supervised learning, but

rather employ learning by imitation. In every new generation of agents, created

by the evolutionary process, each agent in the population selects one of the other

members of the population as an imitation model (teacher). Teachers are selected

stochastically, where the probability of selecting a certain agent as a teacher is

proportional to its innate fitness value (i.e., its initial fitness levels before learn-

ing takes place). The agent employs a back-propagation algorithm, using the

teacher’s output for each input pattern as the target output, mimicking a super-

vised learning mode. The imitation phase in each generation can be conceived

as happening simultaneously for all agents, preventing behaviors acquired by im-

itation from being imitated. Only the innate behavior of the teacher is imitated

by the student. The acquired fitness and final fitness are evaluated in the same

method that was described in the case of conventional learning.

As stated above, acquired knowledge does not percolate across generations.

Each time a new generation is produced, all lifetime adaptations possessed by the

members of the previous generation are lost. Newborn agents inherit only the

genome of their parents, which does not encode the acquired network adaptations

that took place during the parent’s lifetime. Successful individuals that were

copied from the previous generation also go through a new genotype-to-phenotype

ontogenetic development process and thus lose all adaptations acquired during

the previous generation.

To summarize, learning by imitation in a population of evolving agents (IEE)

works as follows:

1. Create the initial population. Assign the network weights of each individual

with randomly selected values.

2. Repeat:

(a) For each individual in the population:

i. Evaluate the innate fitness Fi.

(b) For each individual S in the population:

i. Set S to be the student.
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ii. Select a teacher T from the population. The probability of selecting

a certain individual as a teacher is proportional to its innate fitness

value Fi.

iii. Train S with back-propagation algorithm. Use the output of T as

the desired output (when computing the output of T , use the innate

configuration of T ).

iv. Evaluate the acquired fitness Fa of S.

(c) For each individual in the population:

i. Evaluate the final fitness Ff = Fi+Fa

2
.

(d) Create the next generation by selecting the best individuals according to

Ff and allow them to reproduce as described above.

3.3 The Benchmark Tasks

The model described in the previous section was tested on three different tasks.

The first two are standard classification benchmark problems. The third is an

agent-related task used in previous studies of the interaction between learning

and evolution.

3.3.1 The Parity Problem

The agents evolved to solve the five bit parity problem. A network topology of

5-6-2-1 was used (i.e., 5 input neurons, two hidden layers, the first with 6 neurons

and the second with 2, and 1 output neuron), with an additional threshold unit

in each layer. All 32 possible input patterns were used both for evaluating the

network performance and for training.

3.3.2 The Classification Problem

A simple two-dimensional geometrical classification problem was used in this

task. The network receives as input a point from the unit square and should

determine whether it falls within the boundaries of a predefined triangle. A

network topology of 2-5-1 was used (with an additional threshold unit in each

layer). The test set and training set consisted of 100 points randomly selected

from the unit square.
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3.3.3 The Foraging Task

The task in this simulation is similar to the one described by Nolfi et al. (1994).

An agent is placed on a two-dimensional grid-world (Figure 3.2). A number of

food objects are randomly distributed in the environment. As its sensory input

the agent receives the angle (relative to its current orientation) and distance to the

nearest food object. The agent’s output determines one of four possible actions:

turn 90 degrees left, turn 90 degrees right, move forward one cell, or do nothing

(stay). If the agent encounters a food object while navigating the environment,

it consumes the food object. The agent’s fitness is the number of food objects

that were consumed during its lifetime. Each agent lives for 100 time steps in a

30x30 cells world which initially contains 30 food objects. A network topology of

2-6-2 was used (with an additional threshold unit in each layer).

In this task, unlike the previous ones, there is no explicit oracle we can use

to train the agent. Nolfi et al. (1994) used available data to train the agent on

the task of predicting the next sensory input, which differs, but is in some sense

still “correlated” with that of finding food (the evolutionary task). In our model,

we can still use the same mechanism of learning by imitation to train the agent

on the original evolutionary task, using the best individuals in the population as

teachers.

Figure 3.2: The foraging task: The agent (triangle) navigates in a 2D grid-world.
Food objects (stars) are randomly distributed in the world. The agent can turn
90 degrees left, turn 90 degrees right, move one cell forward, or stay. Each time
the agent encounters a food object, it consumes the food object and gains one
fitness unit. Inspired by Nolfi and Floreano (1999)
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There are several strategies we can apply to determine which sensory input

patterns should be used for training. Randomly selecting arbitrary input pat-

terns, as we did in previous tasks, is not a suitable strategy here as the real input

distribution that an agent encounters while navigating the environment may differ

considerably from a uniform distribution. However, two behaviorally motivated

strategies may be considered: a query model and an observational model. In

the query model, the student agent navigates in the environment and for each

sensory input pattern it encounters, the student queries the teacher to obtain the

teacher’s output for this pattern. The teacher’s output is than used as the target

output in back-propagation training of that pattern. In the observational model,

the student “observes” the teacher agent as the teacher navigates in the environ-

ment and uses the sensory input patterns encountered by the teacher as training

patterns (again, using the teacher’s output for the back-propagation algorithm).

Using this model we can further limit the observed patterns to those which occur

during time steps that precede the event of finding food. This constraint will

allow the student to imitate only useful behavioral patterns. We will label this

strategy as reinforced agent imitation (RAIL).

3.4 Results and Analysis

We first studied IEE in the two classification tasks described in the previous Sec-

tion, where conventional supervised learning can still be applied. In these tasks

we were able to compare the effects that both lifetime adaptation mechanisms

(i.e., learning and imitation) have on the evolutionary process and to specifi-

cally examine what are the effects of using imitative data rather then real data.

The results clearly validate that the IEE model consistently yields an improved

evolutionary process. The innate fitness of the best individuals in populations

generated by applying learning by imitation is significantly higher than that pro-

duced by standard evolution.

Figure 3.3 illustrates the innate performances of the best agent as a function

of generation, in populations evolved to solve the triangle classification problem

(Section 3.3.2). To evaluate the agent’s classification accuracy we use the Mean-

Square Error (MSE) measure to calculate the distance between the network pre-

dicted classification and the true classification, averaged over all the patterns in

the test set. Fitness is defined as (1−Error). The results of a simple evolutionary
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Figure 3.3: The triangle classification task: the innate fitness of the best individ-
ual in the population as a function of generation.

process (dashed line) and of an evolutionary process that employs conventional

supervised learning (dotted line) are compared with those of an evolutionary pro-

cess that employs learning by imitation (solid line). Each curve represents the

average result of 4 different simulation runs with different, randomly assigned, ini-

tial connection weights (the number of repeated simulation runs is limited by the

extensive computation time required in each generation). The results presented

in Figure 3.3 demonstrate how applying either of the learning paradigms yields

better performing agents than those generated by a simple evolutionary process.

Furthermore, applying learning by imitation produces practically the same im-

provement throughout the process as does conventional supervised learning.

When facing the 5-bit parity task, the effect of applying lifetime adaptation is

even more surprising. Figure 3.4 illustrates the innate performances of the best

agent as a function of generation, in populations evolved to solve the 5-bit par-

ity problem. Each curve represents the average result of 10 different simulation

runs with different, randomly assigned, initial connection weights. While simu-

lations applying the IEE model still outperform the simple evolutionary process,

using conventional supervised learning actually results with a significant decrease

in performances. The problematic nature of this specific task may account for

these poor results. The parity problem, although often used as a benchmark, is

considered to be a difficult and atypical classification problem (Fahlman, 1989).

Learning algorithms facing this task tend to get trapped in local minima. How-

ever, learning from an imperfect teacher, as is the case in learning by imitation,
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induces a certain level of noise into the learning process and may thus help to

prevent the process from getting stuck.

Evidently, learning by imitation has a similar (and in some cases, superior)

effect on the evolutionary process to the one that was previously shown for con-

ventional supervised learning. The knowledge possessed by the best members of

the population can be used as alternative training data for other members, even

in the early stages of the evolutionary process. We then turned to use IEE to

enhance evolution where explicit training data is not available. This is the case

in the foraging task described in Section 3.3.3.

Figure 3.5 illustrates the results of the simulations in which the agents faced

the foraging task. The average innate fitness of the population in a simple evo-

lutionary process is compared with the average innate fitness of populations that

applied learning by imitation. The agents in this simulation employed an obser-

vational model and used the RAIL strategy of imitation. Fitness is measured as

the number of food objects an agent consumes during its lifetime. Each curve rep-

resents the average result of 10 different simulation runs with different, randomly

assigned, initial connection weights. As can be seen in Figure 3.5, autonomous

agents produced by our model demonstrate better performances than those gen-

erated by the simple evolutionary process; that is, their innate capacity to find

food in the environment is superior.

We also examined the effect of employing different adaptation levels. In our

experimental setup, the adaptation level is implemented simply as the number of

Figure 3.4: The 5-bit parity task: the innate fitness of the best individual in the
population as a function of generation.
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Figure 3.5: The foraging task: the average innate fitness of the population as
a function of generation. The results of a simple evolutionary process are com-
pared with those of simulations that employed lifetime imitation with two distinct
adaptation forces (2 and 8 learning iterations). Imitating agents employed an ob-
servational model, using the RAIL strategy.

learning (back-propagation) iterations we apply in each lifetime adaptation phase.

The results illustrated in Figure 3.5 also demonstrate that a higher adaptation

level (i.e., a higher number of iterations in each imitation phase) further improves

the performance of the resulting agents. This effect coincides with an analogous

effect reported by Best (1999) where higher transmission force resulted with faster

convergence of the evolutionary process.

To further explore the effects of lifetime imitation on evolution, we examined

the improvement in fitness during lifetime as a function of generation. The im-

provement can be evaluated by calculating the difference between the acquired

fitness and the innate fitness (i.e., Fa − Fi) in every generation. The results

illustrated in Figure 3.6A clearly demonstrate that in very early stages of the

evolutionary process, the best agents in the population already possess enough

knowledge to improve the fitness of agents that imitate them. In fact, the con-

tribution of imitative learning decreases as the evolutionary process proceeds,

probably due to population convergence to high performance solutions.

An additional observation on the interaction between lifetime adaptation and

evolution can be obtained from examining the diversity of the population through-

out the evolutionary process. The average genome variance of the population, i.e.,

the variance among the population members, in the value of each gene (encoding

a certain network weight) averaged over all genes, can serve as a measure of the
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Figure 3.6: The foraging task: the improvement of the population average fitness
gained by lifetime imitation (A) and average genome variance (B) as a function
of generation. Populations that employ lifetime adaptation, maintain a higher
diversity throughout the evolutionary process.

population’s diversity. As demonstrated in Figure 3.6B, during the first few gen-

erations, the population’s initial diversity decreases rapidly due to the selection

pressure of the evolutionary process. However, throughout most of the following

generations, the diversity found in populations subject to lifetime adaptation by

imitation is higher than the diversity of populations undergoing a simple evo-

lutionary process. Allowing members of the population to improve their fitness

through lifetime adaptation before natural selection takes place facilitates the

survival of suboptimal individuals and helps to maintain a diversified popula-

tion. This feature can partly account for the benefit gained by applying lifetime

adaptation to agents evolution.

3.5 Discussion

This chapter focuses on the effects of imitation on the evolution of agents in the

absence of cultural evolution. We show that introducing the adaptive mechanism

of lifetime learning by imitation, utilizing the knowledge possessed by members

of the population, can significantly improve the evolutionary processes and result

in better performing agents. Our IEE model proves to be a powerful tool that

can successfully enhance the evolution of autonomous agents attempting to suc-

cessfully solve various tasks. This paradigm is particulary useful in evolutionary

simulations of autonomous agents, where conventional supervised learning is not

possible.
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The imitation paradigm presented in this chapter assumes that the agents

can estimate the fitness of their peers (i.e., more successful agents are larger and

look healthier, etc.). More specifically, the RAIL strategy, where agents imitate

only successful behavior, assumes that agents can detect significant changes in

the fitness of their peers during their lifetime or identify specific activities that

may contribute to their fitness. In principle, the model presented in Section 3.2

can provide a framework to explore ways in which such assumptions can be

relaxed. Coding imitative behavior attributes (such as the imitation model se-

lection scheme, imitation strategy, imitation period, etc.) into the genome might

result in the spontaneous emergence of intriguing imitative behavior patterns in

a population of agents.

The model can also be extended to study the incentive that should be pro-

vided to an agent to make it assume the role of a teacher. Teaching, or even

allowing someone else to imitate one’s actions is, by definition, an altruistic be-

havior, and might have various costs associated with it. There may hence be

specific conditions which can lead to the emergence of active teaching even in the

presence of a fitness penalty for such a behavior. Such favorable teaching condi-

tions may arise when the fitness associated with various actions is correlated with

the frequency of these actions in the population (see also Boyd and Richerson,

1985, for a discussion of frequency-dependent bias). A good example of this case

can be found in the emergence of normative behaviors (Axelrod, 1986; Flentge

et al., 2001).

Addressing the question concerning the effect of imitation on evolution (rather

than the interaction between culture and evolution), the IEE model presented

here entails a relatively simple form of cultural transmission, confined to a hori-

zontal transmission alone. Although horizontal transmission may be more com-

mon than vertical transmission (Laland, 1992), in general, cultural evolution is

a more complex process, involving both horizontal and vertical transmission (as

well as other forms of cultural transmission), and a parallel evolution of multiple

interacting traits. Such cultural evolution processes may produce dramatically

different dynamics (see, for example, Boyd and Richerson, 1985; Cavalli-Sforza

and Feldman, 1981; Laland, 1992) and will be explored in Chapter 5.

Moreover, to allow a direct comparison with previous studies focusing on

the interaction between learning and evolution, we also avoid any direct form

of acquired-knowledge transfer even within the same generation, and limit the
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imitative process to imitation of innate behaviors. Clearly, imitating behaviors

that are the result of ontogenetic imitation by other individuals can have sig-

nificant consequences and produce markedly dissimilar dynamics. For example,

in the extreme case where ongoing imitation of acquired behaviors is not lim-

ited, one can expect the entire population to eventually converge to the same

behavior. Although the underlying genetic diversity will still be maintain, selec-

tion pressures will be totally suppressed, bringing the evolutionary process into

a dead-end. In such a scenario, imitation could hinder the evolutionary process

rather than enhance it. Even if such an extreme case is not assumed, we suspect

that imitating acquired behaviors may push individuals further and further away

from their innate configuration, masking their genetic potential and consequently

slow the evolutionary process.

Most importantly, as this chapter focuses on the effect of imitative learn-

ing on evolution, in our model the agents’ ability and incentive to imitate is

assumed to be instinctive. Quoting Billard and Dautenhahn (1999), “our exper-

iments address learning by imitation instead of learning to imitate”. However,

the mechanisms underlying imitative learning are themselves the product of an

evolutionary process. It is thus intriguing to also examine the evolutionary ori-

gins and emergence of the neuronal devices that give rise to imitative behavior

and to identify the fundamental characteristics of this evolutionary trajectory.

In the following chapter, we specifically address this question, presenting a novel

framework for studying the evolutionary origins of imitative behavior.
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Chapter 4

The Emergence of Imitation and
Mirror Neurons in Adaptive
Agents

Based on:

Elhanan Borenstein and Eytan Ruppin
The evolution of imitation and mirror neurons in adaptive
agents, Cognitive Systems Research (special issue on Epigenetic
Robotics), 6(3), 229-242, 2005.

Elhanan Borenstein and Eytan Ruppin
The evolutionary link between mirror neurons and imita-
tion: An evolutionary adaptive agents model, Behavioral and
Brain Sciences, 28:2, 127-128, 2005.

Elhanan Borenstein and Eytan Ruppin
Evolving imitating agents and the emergence of a neural
mirror system, Proceedings of the Ninth International Confer-
ence on the Simulation and Synthesis of Living Systems (ALIFE9),
146-151, 2004.

The interplay between any learning mechanism and evolution is clearly bidi-

rectional: As we have shown in Chapter 2 and Chapter 3, the presence of lifetime

adaptation (namely, phenotypic plasticity and imitation) can dramatically affect

the dynamics of the evolutionary process, yielding, in some cases, an acceler-
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ated and enhanced evolution. However, it should be noted that these adaptation

mechanisms are themselves the product of an evolutionary process and may hence

be properly understood only in light of their evolutionary history.

The above statement is especially true for imitative learning. In Chapter 3

we have examined the effect of imitative learning on the evolution of autonomous

agents, assuming that the capacity to imitate is present. However, imitation is

a highly complex cognitive process, involving vision, perception, representation,

memory and motor control, making the study of its evolutionary origins an in-

teresting task. In this chapter, we thus turn to examine the evolution of the

mechanism underlying imitative behavior.

The remainder of this chapter is organized as follows: We begin in Section 4.1

and Section 4.2 with a brief overview of the mirror neurons phenomena and

discuss the appropriate method for studying the evolutionary origins of the neu-

ronal mechanism underlying imitative behavior. We then set out to pursue two

objectives: We first, in Section 4.3, present a novel experimental framework for

evolving imitative learning in evolutionary adaptive autonomous agents (Ruppin,

2002; Floreano and Urzelai, 2000). We demonstrate the evolution of imitating

agents that comprise a simple mechanism of imitative behavior that was not ex-

plicitly engineered into the agents. We then turn, in Section 4.4, to systematically

analyze the structure and dynamics of the resulting neurocontrollers. This analy-

sis reveals neural devices analogous to those found in biological systems, including

clear examples of internal coupling between observed and executed actions. Fur-

ther analysis of the network adaptation dynamics reveals a hybrid mechanism,

combining an innate perceptual-motor coupling with acquired context-action as-

sociations. The chapter concludes with a discussion of the implications of our

findings for imitation theory. The study presented in this chapter has been pub-

lished in Borenstein and Ruppin (2004), Borenstein and Ruppin (2005a) and

Borenstein and Ruppin (2005b).

4.1 Imitation and Mirror Neurons

The past twenty years have seen a renewed interest in imitation in various fields of

research (Prinz and Meltzoff, 2002) such as developmental psychology (Meltzoff,

1996), experimental studies of adult social cognition (Bargh, 1997), and most

relevant to our work, neurophysiology and neuropsychology (Rizzolatti et al.,
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1996, 2002). Research in this last field has led to the exciting discovery of mir-

ror neurons. These neurons were originally found in the ventral premotor cortex

(area F5) in monkeys, an area which is characterized by neurons that code goal-

related motor acts (e.g. hand or mouth grasping). Some of the neurons in this

area, which have been termed mirror neurons, discharge both when the monkey

performs an action and when it observes another individual making a similar

action (Gallese et al., 1996; Rizzolatti et al., 2002). Most mirror neurons exhibit

a marked similarity in their response to action observation and execution, and in

some cases this similarity is extremely strict (Rizzolatti et al., 2001). An analo-

gous mechanism, whereby cortical motor regions are activated during movement

observations was also demonstrated in humans using TMS (Fadiga et al., 1995),

MEG (Hari et al., 1998), EEG (Cochin et al., 1998) and fMRI (Iacoboni et al.,

1999; Buccino et al., 2001). Mirror neurons are thus the first identified neural

mechanism that demonstrates a direct matching between the visual perception of

an action and its execution. The ability to match the actions of self and other may

have a functional role in fundamental cognitive processes, such as understanding

the actions of others, language and mind reading (Rizzolatti et al., 2001). In

particular, imitation of motor skills requires the capacity to match the visual

perception of a demonstrator’s action to the execution of a motor command.

The neural mirror system, demonstrating such an internal correlation between

the representations of perceptual and motor functionalities, may form one of the

underlying mechanisms of imitative ability.

4.2 Evolving Imitating Agents: Emerged vs. En-

gineered Approach

4.2.1 Context-Based Imitation

Learning by imitation, like any cognitive process, must be considered an intrinsi-

cally embodied process, wherein the interaction between the neural system, the

body and the environment cannot be ignored (Keijzer, 2002; Dautenhahn and

Nehaniv, 2002a). In particular, every action, either observed or performed, oc-

curs within a certain context. A context can represent the time or place in which

the action is made, various properties of the environment, the state of the indi-

vidual performing the action or the social interaction partners (see, for example,

Dautenhahn, 1995). Clearly, there is no sense in learning a novel behavior by
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imitating another’s actions if you do not know the context in which these actions

are made – a certain action can be extremely beneficial in one context, but have

no effect (or even be deleterious) in a different context. Discussing an agent-

based perspective on imitation, Dautenhahn and Nehaniv (2002a) consider the

problem of imitating the right behavior in the appropriate context, i.e., “when

to imitate”, as one of the five central questions (“Big Five”) in designing experi-

ments and research on imitation. We hence use the term context-based imitation

in the sense of being able to reproduce another’s observed action whenever the

context in which the action was originally observed, recurs.1 For example, an

infant observing his parents may learn by imitation to pick up the phone (action)

whenever the phone is ringing (context).

Context-based imitation can thus be conceived as constructing a set of asso-

ciations from contexts to actions, based on observations of a demonstrator per-

forming different actions within various contexts. These associations should com-

ply with those that govern the demonstrator’s behavior, and should be learned

(memorized) so that each context stimulates the production of the proper motor

action even when the demonstrator is no longer visible. It should be noted how-

ever, that “action” is an abstract notion, and in reality, an imitating individual

(agent) should also be capable of matching a visual perception of the demon-

strator’s action to the corresponding motor command that activates this action.2

The key objective of this study is to gain a comprehensive understanding of the

mechanisms that govern such context-based imitative learning and to examine the

nature of the associations between visual perception, motor control and contexts

that are being formed in the process.

4.2.2 Studying the Origin of Imitation

Imitation is an effective and robust way to learn new traits by utilizing the knowl-

edge already possessed by others and it has already been applied by researchers

in the fields of artificial intelligence and robotics (see Section 3.1). Further-

more, some researchers, motivated by the recent discovery of a neural mirror

1Animal behavior and human psychology literature introduces a wide range of definitions
of imitation, focusing on what can constitute true imitation vs. other forms of social learning
(Zentall, 2001; Nehaniv and Dautenhahn, 2002). Our definition addresses the importance of
the observed action’s context for a successful behavior.

2In this study we focus on visually based imitation. However, it should be noted that other
forms of imitation, such as vocal imitation, need not involve visual modality (see, for example,
Nehaniv and Dautenhahn, 2002; Herman, 2002).
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system, have implemented various models for imitative learning, employing neu-

rophysiologically inspired mechanisms. Billard (2000) presented a model of a

biologically inspired connectionist architecture for learning motor skills by imi-

tation. The architecture was validated through a mechanical simulation of two

humanoid avatars, learning several types of movements sequences. Demiris and

Hayes (2002) and Demiris and Johnson (2003) developed a mirror-neuron based

computational architecture of imitation inspired by Meltzoff’s Active Intermodal

Matching mechanism (Meltzoff and Moore, 1997) and combined it with an “ac-

tive” distributed imitation architecture. They have demonstrated that this dual-

route architecture is capable of imitating and acquiring a variety of movements

including unknown, partially known, and fully known sequences of movements.

Oztop and Arbib (2002), focusing on the grasp-related mirror system, argued

that mirror neurons first evolved to provide visual feedback on one’s own “hand-

state” and were later generalized to understanding the actions of others. They

have conducted a range of simulation experiments, based on a schema design

implementation of that system, providing both a high-level view of the mirror

system and interesting predictions for future neurophysiological testing. Other

researchers (Marom et al., 2002; Kozima et al., 2002) claimed that the mirror sys-

tem structure can be acquired during life through interaction with the physical

or social environment and demonstrated models whereby perceptual and motor

associations are built up from experience during a learning phase.

The studies cited above, however, assume that the agents’ basic ability and

motivation to imitate are innate, explicitly introducing the underlying function-

ality, structure or dynamics of the imitation mechanism into the experimental

system. In contrast to this engineering-based approach, we wish to

study the neuronal mechanisms and processes underlying imitation

from an evolutionary standpoint, and to demonstrate how imitative

learning per se can evolve and prevail. Evolutionary autonomous agents

form an intuitively appealing approach for modeling and studying the evolution

of biological neural mechanisms (Ruppin, 2002). Using a simulated environment,

wherein agents evolve to perform a simple imitative task, facilitates a thorough

examination of the resulting mechanism in “ideal conditions”: Full control of the

environment and experimental setup, and perfect knowledge of the agents’ be-

havior and neural dynamics. Clearly, acknowledging the evolutionary origins of

imitation and examining the emerging (rather than engineered) device can shed
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light on the common fundamental principles that give rise to imitative behavior.

It is important to note, however, that our key goal in this model is not to sim-

ulate the neural mechanism that underlies imitative behavior in the human or

primate brain nor to incorporate the full range of social skills required for imita-

tive learning (e.g. extraction of the context from the environment or coping with

a different embodiment). The model described in this chapter is clearly a sim-

plified conceptual model and does not presume to encapsulate many of the well

established biological and neuronal data on imitation. Rather, the aim of such

an evolutionary autonomous agents model is to examine generic and universal

properties of complex living systems (the “life as it could be” paradigm, Lang-

ton, 1988, 1995). The key point in this study is thus to examine the emerging

characteristics of the mechanism evolved to support imitation in a system where

no constraints on the underlying mechanisms or representations were explicitly

encoded.

4.3 The Experimental Setup

4.3.1 The Environment

The agents in our simulation inhabit a world that can be in one of several world

states {s1, s2, . . . , sn}. In each time step, the world state is randomly selected

from {s1, s2, . . . , sn} with a uniform distribution. These states can represent, for

example, the presence of certain food items or the size of an observed object

and hence form the context in which actions are observed and performed. The

world state, however, is not visible in every time step and is seen (i.e. included

in the agent’s sensory input) only in 60% of the time steps. An additional set,

{a1, a2, . . . , am}, represents the repertoire of motor actions that can be performed

by the agent or by the demonstrator. A state-action injective mapping is also

defined, assigning a certain action as the proper action for each world state si.

Within the simulations described below, both n and m are set to 4, allowing

4! = 24 different state-action mappings. Regularly performing the proper action

assigned to the current state of the world is deemed a successful behavior and

confers a positive fitness. Similarly, when the world state is not visible, a suc-

cessful agent should not perform any action. It is assumed that the environment

is also inhabited by a demonstrator (teacher), successfully performing the proper

action in each time step. The demonstrator’s action is visible (i.e. included in
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the agent’s sensory input) only in 20% of the time steps. The partial visibil-

ity of the world state and demonstrator ensures that during the agent’s life it

will encounter both scenarios wherein the demonstrator is not visible, forcing

the agent to “memorize” the proper state-action mapping, and scenarios wherein

the world state is not visible, in which a successful agent should “observe” the

demonstrator’s action but not perform any action. The specific visibility values

defined above have no significant effect on the resulting agent, but rather provide

a good blend of the various visibility scenarios during the agents’ life, facilitating

the examination of the agents’ neurocontroller in these scenarios. Furthermore,

the above mapping, from world states to actions, is randomly selected

anew in the beginning of each agent’s run in the world. The motivation

for this state-action mapping shuffle is twofold. First, it prevents such a mapping

from becoming genetically determined. To demonstrate a successful behavior,

agents must learn the proper mapping by observing the demonstrator, promot-

ing an imitation based mechanism to evolve. Second, it represents a scenario of

a changing environment, wherein novel world states appear over time (new food

sources, other species, etc.), making prior state-action mappings obsolete.

4.3.2 The Agent

Figure 4.1 illustrates the structure of the agent’s sensorimotor system and neuro-

controller. The agent’s sensory input in each time step comprises 8 binary values,

including the current world state (if visible) and a 4-cell retinal “image” of the

demonstrator’s action (if visible). The retinal image is determined according to a

predefined mapping from actions to retinal binary patterns which remains fixed

throughout the simulation.3 In time steps wherein the world state or demonstra-

tor are not visible, the corresponding input neurons are set to 0. Each of the

agent’s output neurons represents a motor action command, determining which

actions (if any) will be executed by the agent. The output neurons (as well as

the hidden neurons) are continuous neurons ranging from 0 to 1, and can thus

be perceived as indicating the probability of activating each motor action. A

successful agent should thus produce in each time step an activation level close

or equal to 1 in the motor neuron that corresponds to the appropriate action,

3The selected retinal representation is of no specific significance, however, we use the repre-
sentation illustrated in Figure 4.1 (wherein each action is represented by a multi-bit configura-
tion) rather than a trivial one (wherein each action is represented by a single bit) to examine
the emergence of internal localized representation of complex input patterns.
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Figure 4.1: The agent’s sensorimotor system and neurocontroller. The sensory
input is binary and includes the current world state and a retinal “image” of
the demonstrator’s action (when visible). The retinal image for each possible
demonstrator’s action and a retinal input example for action a4 are illustrated.
The motor output determines which actions are executed by the agent. The
network synapses are adaptive and their connection strength may change during
life according to the specified learning rules.

and values close or equal to 0 in the rest of the motor neurons. In time steps

where the world state is not visible (and thus, no action should be performed by

the agent), a successful agent should produce activity level close or equal to 0 in

all motor neurons.

Considering the agent’s task and the environment it inhabits, the architecture

of the agent’s neurocontroller should encompass several characteristics. Clearly,

it should be capable of acquiring new behaviors during the agent’s life to allow

imitative learning. However, to support complex dynamics which may employ

both a fixed component and a learned behavior, the neurocontroller should also

allow a combination of innate and acquired elements. Moreover, the precise blend

of innate and acquired properties should be determined through genetic evolution.

An interesting architecture that satisfies these requirements has been proposed

by Floreano and Urzelai (2000), and is applied with a few modifications in the

model described below.

Each agent employs a simple feed-forward neural network as a neurocon-

troller (i.e. the agent cannot perceive its own actions). These networks however
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are adaptive, whereby the genotype of each individual encodes not only the ini-

tial synaptic weights but also a Hebbian learning rule and learning rate for each

synapse (Floreano and Urzelai, 2000). In particular, each synapse in the net-

work, (i, j), connecting neuron j to neuron i, is encoded by 4 genes, defining the

following properties:

(i) w0
ij - the initial connection strength of the synapse (real value in the range

[0, 1]).

(ii) sij - the connection sign (1 or -1).

(iii) ηij - the learning rate (real value in the range [0, 1]).

(iv) ∆wij - the learning rule applied to this synapse.

Each synaptic weight wij is initialized with w0
ij at the beginning of the agent’s

life and is updated after every time step (a sensory-motor cycle) according to:

wt
ij = wt−1

ij + ηij∆wij .

∆wij encodes one of five learning (modification) rules (here, oj and oi denote the

activity of the presynaptic neuron and postsynaptic neuron respectively):

(1) No learning: ∆wij = 0 .

(2) Plain Hebb rule: ∆wij = (1− wij)ojoi .

(3) Postsynaptic rule: ∆wij = wij(−1 + oj)oi + (1− wij)ojoi .

(4) Presynaptic rule: ∆wij = wijoj(−1 + oi) + (1− wij)ojoi .

(5) Covariance rule:

∆wij =

{
(1− wij)F(oj, oi) if F(oj, oi) > 0
(wij)F(oj, oi) otherwise

where F(oj, oi) = tanh(4(1− | oj − oi |)− 2).
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These rules have been selected based on neurophysiological findings (i.e. they

encapsulate some of the common mechanisms of local synaptic adaptation found

in biological nervous systems) and were modified to satisfy some computational

constraints (e.g. in this adaptation process synapses cannot change sign and

their strength is kept in the range [0, 1]). For a detailed description of these

adaptation dynamics see Floreano and Urzelai (2000). The synaptic weights can

thus adapt online, during life, using the genetically specified learning scheme.

The network topology is static throughout the process and for the purpose of

our simulation was set to 8-7-4 (i.e., 8 input neurons, a hidden layer with 7

neurons, and 4 output neurons), with an additional threshold unit in each layer.

Such evolutionary adaptive autonomous agents, inspired by those presented in

Todd and Miller (1991) and Floreano and Urzelai (2000), demonstrate a learning

process that is supervised only indirectly, through natural selection.

4.3.3 The Evolutionary Process

A population of the agents described above evolve to successfully behave in the

environment. Each agent lives in the world for 500 time steps. Fitness is evaluated

according to the agent’s success in performing the proper action assigned to the

current world state (i.e. activating only the appropriate motor neuron), according

to the state-action mapping, in each time step. An agent should perform an action

only if the world state is visible and regardless of the demonstrator’s visibility.

We use the Mean-Square Error (MSE) measure to calculate the distance between

the agent’s motor output (continuous values ranging from 0 to 1) and the desired

output (a value of 1 for the appropriate motor neuron and 0 for the rest), averaged

over the agent’s life. A MSE value of 0 thus indicates a perfectly behaving agent.

The agent performance during the first 100 time steps is not evaluated (infancy

phase). Fitness value is then calculated as (1−MSE) and averaged over 20 trial

runs in the world.

The initial population is composed of 200 individuals, each assigned a ran-

domly selected haploid genome (i.e. each individual holds one copy of the genome),

encoding the initial connection weights, learning rules and learning rates. Each

new generation is created by randomly selecting agents from the previous gen-

eration and allowing them to reproduce. Agents are selected according to their

fitness, using linear scaling and a roulette wheel selection scheme (Mitchell, 1998).

During reproduction, 2% of the genes are mutated. Connection strength genes
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Figure 4.2: The fitness of the best agent in the population and the population
average fitness as a function of generation.

and learning rate genes are mutated by adding a randomly selected value from

the interval [−0.3, 0.3], connection sign genes are mutated by flipping the sign

and learning rule genes are mutated by randomly selecting one of the available

rules. The genomes of the top 20% of individuals are copied to the next genera-

tion without mutation. Variations in these parameter values have no significant

effect on the resulting agents.

4.4 Results and Analysis

4.4.1 The Evolution of Imitation

Within the settings described in the previous section the proper action assigned

to each world state is randomly selected anew at the beginning of the agent’s

life. The appropriate state-action associations can thus be inferred only from

the demonstrator’s observed actions. Agents cannot rely on genetically coded

behavior and must incorporate some sort of imitation-based learning strategy in

order to demonstrate a successful behavior. Although no such learning strategy

was explicitly introduced into the system, examining the fitness of the best agent

in the population as a function of generation clearly demonstrates that such
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Figure 4.3: The activation level of one motor neuron (m2) during the first 150
time steps. The different shapes indicate whether the world state was s4 and
whether it was visible. The triangles at the bottom further represent time steps
in which the demonstrator was visible.

imitating agents have evolved (Figure 4.2). Evidently, after approximately 2000

generations, the evolved agents successfully master the behavioral task, regularly

executing the proper action in each world state. Obviously, given the way the

task is designed, this would not have been possible in the absence of an emerged

imitation-based learning strategy.

Having successfully evolved imitating agents, we turned to examine the struc-

ture, dynamics and neural mechanisms that these agents employ. We have per-

formed numerous evolutionary simulation runs, of which approximately half re-

sulted in near-optimal imitating agents (exhibiting evolutionary dynamics similar

to those shown in Figure 4.2). Unsuccessful simulation runs seemed to stem from

early convergence of the population to sub-optimal solutions (wherein agents did

not produce a distinct motor action in each time step). In the remainder of

this chapter we focus on analyzing one such successful agent – the best agent

in the last generation of a specific evolutionary simulation run. Other successful

agents, from various evolutionary runs, were analyzed and demonstrated similar

dynamics.

Direct evidence of the agent’s successful imitative behavior and the resulting

learning dynamics are demonstrated in Figure 4.3, depicting the activity of one of

the motor neurons (m2) in different states of the world. In this specific simulation

run, the state-action mapping was arbitrarily set so that a2 is the proper action

in world state s4 and not in any other state. In the beginning of its life, the agent

activates motor m2 (i.e., performs action a2) whenever the world state is visible.

64



50 100 150 200 250 300 350 400 450 500

0

0.2

0.4

0.6

0.8

1

Time Step

N
eu

ro
n 

A
ct

iv
ity

World state = s
4

World state = s
2

World state ≠ s
4
,s

2

World state not visible
Demonstrator visible

Figure 4.4: The activation level of motor neuron m2 during the agent’s life,
demonstrating the agent’s ability to learn new behaviors. In this simulation run
the state-action mapping was modified in step 250, making a2 the proper action
in world state s2 rather than s4 as it was initially set. The triangles at the bottom
further represent time steps in which the demonstrator was visible.

However, after only a few demonstrations of the appropriate behavior, the proper

state-action mapping is learned and this motor is activated only when the world

state is s4, as expected. In fact, as demonstrated in Figure 4.4, the ability to

learn the appropriate state-action mapping by imitation remains active during

the agent’s life, allowing the agent to learn a new mapping when necessary. In

this experiment, the state-action mapping was initially set, as before, so that

a2 is the proper action in world state s4. However, in the middle of the agent’s

life (time step 250) the state-action mapping, and accordingly the demonstrator’s

behavior, was changed so that a2 is the proper action in world state s2. Evidently,

although the agent learned a certain mapping in the beginning of its life, it can

quickly adapt to a new mapping after observing a few demonstrations of the new

appropriate behavior.

4.4.2 The Emergence of Mirror Neurons

Examining the network hidden layer reveals an interesting phenomenon with

regard to the internal representation of actions. As stated above, to support imi-

tative learning, wherein associations from contexts to motor commands should be

inferred from observations of the demonstrator’s actions, an agent should be capa-

ble of matching the visual perception of an observed action to the motor command

that generates the corresponding action. Figure 4.5, depicting the activation level

of 3 hidden neurons, attests to the emergence of such inherent perceptual-motor
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coupling. Apparently, various neurons in the hidden layer are active both when

the agent performs a certain action and when it observes the demonstrator mak-

ing a similar action, forming internal mirror neurons analogous to those

found in biological systems. For the purpose of this study, we thus define

mirror neurons as neurons that show a neural activation level significantly higher

than 0 for both observation and execution of a certain action, and are not ac-

tive in any other scenario. Although other definitions may be applied, the above

definition forms a suitable analogy to the characteristics of biological neural mir-

roring. Interestingly, as seen in Figure 4.5, the activation level of mirror neurons

during action observation is typically lower than the activation level during action

execution. An analogous phenomenon can also be detected in neuronal record-

ing data in the literature, and should be further investigated. However, in our

simulation, the relatively small number of hidden neurons and mainly, the feed-

forward nature of the network may account for this phenomenon, forcing mirror

neurons to participate also in motor excitation.4 These constraining properties of

the artificial network, a direct consequence of several computational limitations,

may also induce some constraints on the biological implications of this model,

including, for example, the lack of clear distinction between active and passive

perception. Such mirror neurons were found in most of the agents that evolved

in our simulation environment. However, typically, not all actions in the reper-

toire were associated with a corresponding mirror neuron, and there have been

a few cases where successful agents did not seem to incorporate any clear neural

mirroring matching our above definition. There was also no evident correlation

between the initial conditions or the simulation parameters and the emergence

of mirror neurons, nor a clear effect of mirror neurons evolution on the fitness of

the evolving agents.

The functional characteristics of the emerging mirror neurons were further

examined through a set of intervention experiments, wherein hidden neurons

were externally activated (stimulated) or inactivated (lesioned). These experi-

ments confirmed that the detected mirror neurons convey the required informa-

tion about the action to be performed. For example, when the world state is

4Furthermore, the relatively small number of hidden neurons may form a bottleneck that
promotes the use of these neurons for both action perception and action execution and con-
sequently the formation of mirror neurons. However, the fact that the same single neuron is
activated in the observation and activation of the same specific action, the essence of mirroring,
is surprising.
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Figure 4.5: The activation level of 3 hidden neurons (h4, h5 and h6) during time
steps 100-200 with an indication of the executed or observed action. Circles,
squares, diamonds and triangles represent actions a1, a2, a3, a4 respectively. An
empty shape indicates that the action was only observed but not executed, a
filled shape indicates that the action was executed by the agent (stimulated by a
visible world state) but not observed, and a dotted shape indicates time steps in
which the action was both observed and executed.
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not visible (a scenario that would usually result in no action being performed)

an ‘artificial’ stimulus of a mirror neuron resulted in the agent’s performance of

the action associated with that mirror neuron. Similarly, inactivating a mirror

neuron inhibits the production of the associated action and in some cases resulted

in the production of the wrong action.5 Furthermore, applying multiple neurons

activation/inactivation settings, it has been shown that even actions that could

not be associated with a fully localized representation (i.e. a single mirror neu-

ron) are still represented in the hidden layer through a distributed configuration

of neurons. These findings also account for the cases mentioned above wherein

successful agents did not seem to incorporate any clear localized mirror neurons.

Although we cannot characterize the conditions leading to the emergence of local-

ized mirror neurons rather than a distributed representation and although mirror

neurons do not seem to have an effect on the fitness of the agent, we believe

that the described setup dramatically increases the probability of mirror neuron

evolution.

4.4.3 The Developmental Dynamics

We finally turn to examine the ontogenic, developmental aspects of the resulting

neurocontroller. Our main objective is to identify which components in the neu-

ral mechanism are innate and which are acquired during the agent’s life. We first

determine which synapses play a significant role in the learning process. Clearly,

variation in the synapse strength during life or the genetically coded learning rate

are not appropriate indicators as they cannot differentiate between learning pro-

cesses that genuinely adapt the agent to the world and unrelated self-organization

processes. We thus measure the variance in the connection strength at the end

of the agent’s life across 1000 simulation runs (i.e. the particular agent that was

analyzed above, living 1000 different lifetimes). A low variance value indicates

that the synapse dynamics are independent of the world characteristics (e.g. the

state-action mapping), and thus cannot contribute to the learning process that

5Recent reversible inactivation studies (Fogassi et al., 2001) demonstrated a distinction be-
tween two sectors in area F5 in monkeys: Mirror neurons are located in sector F5 convexity.
Canonical neurons (neurons that respond to the presentation of three-dimensional objects of
different size and shape) are located in sector F5 bank. While inactivation of area F5 bank pro-
duced a severe deficit of the required actions, inactivation of the cortical convexity determined
only a motor slowing, preserving the appropriate action production. Clearly, within our simple
model, such distinction between canonical and mirror neurons could not have developed and
the mirror neurons that have emerged play a crucial role in the visuomotor pathway.
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Figure 4.6: An illustration of the connection strength variance (A) and the overall
contribution (B) of the synapses connecting the sensory input layer (presynaptic)
to the hidden layer (postsynaptic). Neurons 1-4 of the presynaptic input layer
represent the world state while neurons 5-8 are the retinal neurons, representing
the observed demonstrator’s action. Neurons 4-6 of the hidden postsynaptic layer
have been identified as mirror neurons.
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adapt the agent to the world. As demonstrated in Figure 4.6A, this measure

highlights the acquired nature of the synapses connecting the world state neu-

rons (input neurons 1-4), with the mirror neurons we have identified (hidden

neurons 4-6). Clearly, the acquired state-action associations are induced

by these synapses. The markedly lower variance values in other synapses from

this layer and in synapses connecting hidden layer neurons to motor neurons (not

illustrated here), suggest that these synapses do not play an important part in the

learning process and encompass the innate properties of the network. We then

turned to determining the overall contribution of each synapses to the agent’s

successful behavior, either learned or innate. Examining the effect of numerous

multiple lesion configurations, we have utilized the Multi-perturbation Shapley

value Analysis (MSA), a rigorous way to determine the importance of system ele-

ments (Keinan et al., 2004). In each configuration, a set of synapses are cancelled

out by setting both their initial strength and learning rate to 0. The resulting

contribution of each synapse connecting the input layer to the hidden layer is illus-

trated in Figure 4.6B. Evidently, the synapses that have been identified above as

participating in the learning process possess a non-negligible contribution value.

However, the most important synapses are among those connecting the retinal

neurons (input neurons 5-8), representing the observed action, with the mirror

neurons (hidden neurons 4-6). These connections manifest the strong in-

nate associations between the visual perception of observed actions

and the internal representation of these actions, developed during the

evolutionary process.

Based on the findings described above, a simple model of the mechanism

that evolved in our settings to support imitative behavior can be inferred (Fig-

ure 4.7). Notably, the required perceptual-motor coupling was not explicitly

engineered into the agents, but rather emerged through evolution as an innate

property. Furthermore, to support an effective mechanism of imitation, visually

perceived actions are linked to the corresponding motor commands via fully local-

ized internal elements, representing each action, in the form of mirror neurons.

The acquired context-action stimuli can then be constructed through a simple

mechanism of Hebbian learning without external supervision or reinforcement

signals.
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Figure 4.7: A simple model of context-based imitation. Solid arrows represents
innate associations, while dashed arrows represents associations that are acquired
during the agent’s life via Hebbian learning.

4.5 Discussion

This study presents an experimental framework for studying the evolution and

dynamics of imitation in evolutionary autonomous agents. This framework pro-

vides a fully accessible, distilled model for imitation and can serve as a vehicle

for studying the mechanisms that underlie imitation in biological systems. As

stated in Section 4.2.2, our experimental setup employs a simplified model that

is not presumed to encapsulate many of the well established biological and neu-

ronal data on imitation, nor to simulate a fully realistic social learning scenario.

Rather, the aim of this model is to examine the generic and universal properties of

imitative learning mechanisms. Our confidence in this framework is based on two

observations: First, being an evolutionarily developed mechanism, rather than an

engineered one, we believe it is likely to share the same fundamental principles

driving natural systems. Second, our analysis of the resulting mechanism reveals

phenomena analogous to those found in biological neural mechanisms.

The key point in our findings is that in creating a system in which only the

evolution of imitation is solicited, a neural mirroring system has emerged. That is,

even though no constraints on the underlying mechanisms or representations were

explicitly encoded into the system, such mirror neurons have been demonstrated.
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These findings imply a fundamental and essential link between the ability to

imitate and a mirror system. In fact, in this regard, we believe that the simplicity

of our model is one of its key assets: The emergence of neuronal mirroring to

support imitation even in such a simple model, may suggest a universal and

fundamental link between the ability to replicate the actions of others (imitation)

and the capacity to represent and match others’ actions (mirroring).

It is also important to note that although it has been hypothesized that mirror

neurons underlie imitative learning functionality, the precise role of the mirror

system remains unknown (Rizzolatti et al., 2001). The linkage between imitation

and mirroring demonstrated in our study corroborates this hypothesis and may

prove to be interesting for understanding the mechanisms that give rise to social

cognitive skills. Moreover, the mirror neurons that emerged in our model, being

a clear instance of a shared internal representation between observed and exe-

cuted actions, also provide interesting insights that may be applied to artificial

intelligence and robotic research. Although the use of internal representation is

prevalent in engineered systems, the existence of such a representation in evolved

systems has been challenged (Cliff and Noble, 1997). The model presented in this

chapter, promoting the use of observed actions of “others” for learning proper

motor actions of “self”, provides a simple example of evolved internal represen-

tation.

The framework presented in this chapter can be further enhanced to examine

central issues concerning the development of imitation in animals and artifacts

and the functional role of the neural mirror system. One potential application

of such a framework can allow to determine the physical and social environmen-

tal conditions that promote the emergence of mirror neurons. Additionally, our

framework can be enhanced to simulate a more realistic scenario of social learn-

ing. For example, one can examine how an extension of the agent’s sensory input,

and a complex social environment inhabited by demonstrators with varying lev-

els of success, affect the resulting imitation strategy. Questions concerning the

dependencies between observed and executed actions and the formation of neural

mirroring are especially of great interest: How will the representation of actions

that cannot be executed by the observer (e.g. due to different embodiment) dif-

fer from those of imitated actions? How will a hierarchical repertoire of actions

affect the emerging representation? Another intriguing possibility would be to

utilize this framework to explore the role of mirror neurons in the evolution of
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communication (Rizzolatti and Arbib, 1998; Arbib, 2002) and in predicting the

actions of others (Ramnani and Miall, 2004). It should also be noted that our

experimental setup does not include agent-environment interaction and that the

actions of the agent cannot affect its own next state. Focusing on the emerging

representation of observed and performed actions, this choice of a non situated

approach is sufficient and does not mask the obtained results with redundant

factors concerning agent-environment bidirectional influence. It would be, how-

ever, interesting to also consider a situated approach, where, for example, the

agent’s behavior affects the actions it observes next. Specifically, one can exam-

ine whether agents in this setup could evolve a behavioral pattern that increases

their future exposure and observation of novel demonstrator actions.

Furthermore, as the focus of this study is the emergence of shared and local-

ized action representation and the matching between perceived and performed

actions, our model assumes a finite and predefined set of motor actions that

are already present in the action repertoire of both the imitating agent and the

demonstrator. However, we do not address the question of how perceiving the

action of another individual can translate into an action (of the perceiving in-

dividual) that resembles the perceived action. That is, how can an imitating

individual learn a new motor action simply by observing a demonstrator? This

question also relates to the “Big Five” central questions in imitation experiments

presented by Dautenhahn and Nehaniv (2002a). One approach to addressing

this issue applies forward neural network models (see, for example, Jordan and

Rumelhart, 1992). These models of learning use intentions as inputs, which are

transformed into actions by the learner, which, in turn, are transformed into

outcomes by the environment. Within this approach, imitation involves learn-

ing a set of intention-outcome training pairs. Solving a learning problem is thus

performed in two phases: First the learner forms a predictive internal model,

transforming actions into outcomes. This model is then used to solve the map-

ping between intentions and actions. In the context of learning by imitation,

this predictive internal model can generate predictions of the effects of executed

actions and match those to the observed consequences of the demonstrator’s ac-

tions, allowing an imitating individual to translate observed actions into novel

actions of self.

Clearly, the simple model presented in this chapter cannot account for the

full range of imitative behaviors found in nature (e.g. recognition of novel or
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compound actions). However, focusing on low-level, innate imitation, this model

addresses the essential questions concerning the mechanism underlying imitative

behavior. It successfully demonstrates how the required associations between

perceived actions, motor commands and contexts can be constructed within a

hybrid adaptation process, combining evolution and lifetime learning.

Once the capacity to imitate is in place, acquired behaviors may be transmit-

ted from one individual to the other, percolating across populations and genera-

tions and eventually facilitating cultural evolution. In the following chapter we

turn to examine the resulting dynamics of such cultural evolution processes. We

apply traditional population biology paradigms, adjusted and extended to encap-

sulate the properties of cultural evolution, for studying a model of cultural niche

construction in a metapopulation and demonstrate how various social phenomena

can be explained better by it.
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Chapter 5

Cultural Niche Construction in a
Metapopulation

Based on:

Elhanan Borenstein Jeremy Kendal and Marcus Feldman
Cultural niche construction in a metapopulation, Theoreti-
cal Population Biology, 70(1), 92-104, 2006.

In the previous chapter we have examined the evolutionary origins of imitative

behavior, demonstrating how imitation, and specifically, the mechanisms under-

lying the capacity to imitate, can emerge via the evolutionary process. However,

imitation is also the vehicle that eventually drives cultural evolution - the evo-

lution of ideas, thoughts, knowledge and beliefs. Interestingly, these cultural

evolution processes show many similarities to biological evolutionary dynamics

and are often examined and analyzed by models originally developed within the

traditional population biology discipline (e.g., Boyd and Richerson, 1985; Cavalli-

Sforza and Feldman, 1981). These relatively simple mathematical models can

facilitate the study of complex cultural phenomena, providing a quantitative and

computational toolbox.

One such cultural evolution pattern concerns the demographic transition - a

major social process occurring over the recent decades. Bongaarts and Watkins

(1996) examined the correlation between the level of development1 and the on-

set of the demographic transition2 across various countries and noted a puzzling

1Using the human development index proposed by UNDP, 1990
2The demographic transition is characterized, typically, by an increase in socioeconomic

development, a reduction in mortality, and a subsequent (often many years later) reduction in
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phenomenon: although the earliest countries to undergo the demographic tran-

sition were those that were most highly developed, with the passage of time,

the onset of the transition in different countries occurred at ever lower levels of

development. They attributed this phenomenon to the influence of social in-

teractions at varying levels (e.g., via local, national and international channels)

on the diffusion dynamics of information and ideas. They presented a compre-

hensive interpretation of such multilevel social interactions and their effect on

the adoption of fertility control, calling for further research and modeling of this

phenomenon. Furthermore, evolution-minded human scientists have struggled to

produce a satisfactory evolutionary explanation for the demographic transition

(Borgerhoff Mulder, 1998), and to many researchers this remains a puzzle. In

this respect, the analysis by Ihara and Feldman (2004) provides a potential, al-

beit partial, solution. In this chapter we build on this work and construct such

a model in terms of a metapopulation that incorporates the concept of cultural

niche construction (Odling-Smee et al., 2003; Ihara and Feldman, 2004).

The remainder of this chapter is organized as follows. We first introduce the

concept of cultural niche construction and identify the need to incorporate popu-

lation structure considerations into niche construction dynamics. In Section 5.2,

we present the Metapopulation Cultural Niche Construction (MPCNC) model.

We examine the resulting dynamics in Section 5.3, demonstrating the emergence

of analogous phenomena to those described by Bongaarts and Watkins (1996),

and present a local stability analysis of the equilibrium states as well as a sensitiv-

ity analysis. The chapter concludes with a discussion and a brief summary. The

study presented in this chapter has been published in Borenstein et al. (2006b).

5.1 Cultural Niche Construction, Metapopula-

tions, and Social Networks

Traditionally, biologists regarded organismic evolution as a complex dynamic pro-

cess, taking place in an autonomously changing environment. However, organisms

can modify their environment and thus significantly alter the selection pressures

fertility (Coale, 1974). Such a “fertility transition” is thought to result not only from rising
costs and declining economic value of children (e.g., Notestein, 1953; Mace, 1996, 2000), but also
from the social transmission of information concerning fertility control, and social influences,
such as conformity, affecting the preference for fertility control (Cleland and Wilson, 1987;
Borgerhoff Mulder, 1998).
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governing the evolution of their own or other species (Lewontin, 1983). This

phenomenon, termed niche construction (Odling-Smee et al., 2003; Laland et al.,

1996, 2001), may have a profound effect on the evolutionary process, markedly

changing evolutionary trajectories. Laland et al. (1996) used two-locus genetic

models to investigate the evolutionary consequences of niche construction. In

their models, it was assumed that a first locus governs niche-constructing be-

havior of individuals by affecting the amount of some resource in the environ-

ment. Viability selection, acting at a second locus, was assumed to depend on

the amount of this resource. They showed that niche construction may generate

selection pressures that lead to fixation of otherwise deleterious alleles, maintain

genetic polymorphism where none is expected, eliminate what would otherwise

be stable polymorphism, and produce time lags in the response to selection, as

well as other unusual evolutionary dynamics.

For humans (and perhaps some other species), cultural traits can be analyzed

in an analogous manner. In recent studies (Ihara and Feldman, 2004; Kendal

et al., 2005), an analog of the two-locus model was applied to demonstrate the

effect of cultural niche construction. Two culturally transmitted traits were con-

sidered where the frequency of the first vertically transmitted trait (e.g. level of

education) acts as a cultural niche or background that affects the rate of oblique

or horizontal transmission of a second cultural trait (e.g. adoption of fertility-

reducing preferences). They showed that cultural niche construction may facil-

itate the ‘demographic transition’ as an increase in the mean level of education

facilitates, following a time lag, an increase in the preference for fertility control.

These studies assumed an unstructured population, and focused on the effects

that the cultural niche may have on the cultural transmission process within that

population. However, as pointed out by Bongaarts and Watkins (1996), human

populations are structured, with levels of organization, hierarchy and subgroups

that may markedly affect the dynamics of cultural transmission. Thus, in this

study we extend the single population cultural niche construction model to in-

corporate population structure. We examine the process of cultural niche con-

struction in a metapopulation (a population of populations) where the local fre-

quency of one cultural trait in each population influences the transmission rate

of a second trait both within and between the different populations. Cultural

niche construction is introduced using a weighted social network that represents

the level of communication within and between populations and we examine the
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propagation dynamics of a second cultural trait on this network. We demonstrate

how variation in the onset of cultural transitions between populations, for exam-

ple the fertility transition, can be accounted for by the structure of a cultural

background that facilitates social interactions between different populations.

5.2 The MPCNC Model

The Metapopulation Cultural Niche Construction (MPCNC) model considers a

metapopulation of n populations and two cultural traits. The first cultural trait,

E, provides a cultural background or niche that may affect the evolution of the

second cultural trait, A. The frequencies of individuals in population i, and at

generation t, that exhibit the combination of traits EA, Ea, eA and ea are given

by xt
22,i, xt

21,i, xt
12,i and xt

11,i, respectively, where xt
22,i + xt

21,i + xt
12,i + xt

11,i = 1.

The frequencies of traits E and A within population i at generation t are given

by pt
i = xt

21,i + xt
22,i and qt

i = xt
12,i + xt

22,i, respectively. In the context of fertility

transitions, the frequency of trait E might represent some index, or correlate, of

human development such as the mean level of education in a population, while

trait A represents the preference to adopt fertility control.

During each generation two phases of cultural transmission take place. In the

first phase, traits E and A are vertically transmitted3 (from parents to offspring)

within each population i, with probabilities b3,i, b2,i, b1,i and b0,i for mother-father

mating pairs of type E-E, E-e, e-E and e-e, respectively, and with probabilities

c3,i, c2,i, c1,i and c0,i for mating pairs of type A-A, A-a, a-A and a-a, respectively4

(in accordance with Cavalli-Sforza and Feldman, 1981). Note that traits e and a

simply represent the default states of those that have not adopted E or A, respec-

tively. The fertility selection coefficient, f , represents a fitness cost to parents

that have adopted trait A, such that the relative number of offspring for mating

pairs with traits A-A, A-a (or a-A) and a-a is 1 − f , 1 − f
2

and 1, respectively.

Assuming a simple random mating scheme, the frequencies of the four types, EA,

Ea, eA and ea in the offspring generation after vertical transmission (superscript,

3See, for example, Cavalli-Sforza et al. (1982), providing evidence for parent-offspring cor-
relation in attitudes to education.

4In the case of fertility transitions, we assume that the costs and benefits associated with
the adoption of a high level of education (that may affect the rate of diffusion of trait E) are
subsumed within the vertical transmission coefficient, b (see Equations (5.1) and (5.2)) for each
population. The validity of the assumptions underlying the dynamics of trait E is addressed
in the general discussion.

78



v), are shown in Appendix C.1. Furthermore, assuming that for population i at

generation t = 0, there is no statistical association between traits E and A, that

is, Di = x22,i − piqi = 0 (this assumption will be validated below), the analysis

can be simplified from the recursion in the four combinations of traits (shown

in Appendix C.1, equations (C.1)–(C.4)) to recursion in the two traits. Under

this assumption, the frequencies of the two traits in the offspring generation after

vertical transmission (indicated by superscript, t, v) are given by

pt,v
i = b3,i(p

t−1
i )2 + (b2,i + b1,i)p

t−1
i (1− pt−1

i ) + b0,i(1− pt−1
i )2 (5.1)

W t−1
i qt,v

i = (1− f)c3,i(q
t−1
i )2 + (1− f

2
)(c2,i + c1,i)q

t−1
i (1− qt−1

i )

+c0,i(1− qt−1
i )2 (5.2)

The frequency of trait A in population i after fertility selection is normalized by

dividing by the mean fitness in the population, W t−1
i = 1− qt−1

i f . Throughout,

we consider the simple case where b3,i = c3,i = 1, b0,i = c0,i = 0 for all populations.

Also, we assume for simplicity that for each population i, there is no parental

transmission bias of E, b2,i = b1,i = bi, and that c2,i = c1,i = c = 0.5 (i.e. vertical

transmission of trait A is completely unbiased in all populations). (5.1) and (5.2)

then simplify to

pt,v
i = (pt−1

i )2 + 2bip
t−1
i (1− pt−1

i ) (5.3)

qt,v
i = [(1− f)(qt−1

i )2 + (1− f

2
)2cqt−1

i (1− qt−1
i )]/(1− qt−1

i f) . (5.4)

It should be noted that in these settings, if no other transmission phase would

take place, the fitness cost of parents that have adopted trait A (i.e. f > 0) will

prevent trait A from spreading in the population.

In the second phase, trait A is transmitted horizontally, (within the offspring

generation), percolating across a social network connecting the various popula-

tions. The social network includes n vertices, each representing a population.

The weight of the edge (i, j), eij, connecting vertex i to vertex j, represents the

level of communication (and thus affects the transmission rate) between popula-

tions i and j. We assume that the level of communication between each pair of

populations is determined by the cultural background (i.e. the frequency of trait
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E) in each of these populations. In our model, the weight of each edge (i, j) at

generation t is given by

et
ij = µ0K

2 + µ1p
t,v2

+ µ2p
t,v
i pt,v

j (5.5)

where K is some constant and pt,v denotes the average frequency of trait E across

all populations at generation t. The first term in this expression, µ0K
2, represents

a baseline communication level that is not affected by the cultural background.

Hence, when µ0 > 0 but µ1 = µ2 = 0, the selection on A is independent of E

and no niche construction occurs. The second term, µ1p
t,v2

, represents the effect

of global niche construction that results from the mean cultural background in

the metapopulation, while not distinguishing between the various populations.

Applying these two terms alone reduces the model to the simpler scenario of

cultural niche construction in one population (the union of all populations in

the metapopulation) similar to Kendal et al. (2005). Finally, the third term,

µ2p
t,v
i pt,v

j , represents a local niche construction effect, specific to population i and

its relationship with population j in the metapopulation.

By adjusting the values of µ0, µ1 and µ2, we can examine the influence of each

of these metapopulation niche construction ‘modes’5. As will be demonstrated in

the next section, in order to reveal the unique characteristics of niche construction

in a metapopulation (as opposed to one, uniform population), the third term of

this expression, representing the local niche construction mode, is necessary.

Overall, trait A is transmitted horizontally from population j to population

i with a probability that is dependent on the edge weighting, et
ij, the frequency

of trait A in population j and the horizontal transmission coefficient h. We

also assume that individuals in population i conform to the preference of the

majority in their population, i.e. preferring trait A or the default, a, according to

a conformity coefficient ψ. For ψ > 0, the conformity term, 1+ψ(2qt,v
i −1), ranges

from 1− ψ (reduced transmission) for qt,v
i = 0 to 1 + ψ (enhanced transmission)

for qt,v
i = 1 and does not affect transmission in a balanced population, qt,v

i = 0.5.

The frequency of trait A in population i after this horizontal transmission phase

is calculated by averaging the effect of the transmission of trait A from all the

populations in the metapopulation to population i and is thus given by (see also

5The case µ0 = µ1 = µ2 = 0 induces eij = 0 (no communication between the different
populations), and hence, no horizontal transmission. This scenario will not be examined in this
analysis as under the settings described above it always results in the extinction of trait A.
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Appendix C.2)

qt
i = qt,v

i +
1

n

n∑
j=1

(et
ijq

t,v
j )h(1− qt,v

i )[1 + ψ(2qt,v
i − 1)] . (5.6)

Note that the total probability of horizontal transmission is the sum across all

edges in the social network. The frequency of trait E in population i does not

change in this phase, that is, pt
i = pt,v

i .

Considering these transmission phases, Appendix C.3 corroborates the valid-

ity of our assumption concerning the lack of statistical association between traits

E and A (i.e. Di = x22,i − piqi = 0).

5.3 Dynamics and Analysis

5.3.1 Dynamics

We first examine the influence of trait E, the cultural niche, on the horizontal

transmission of trait A at a certain generation (the index t is thus omitted).

Considering the ‘effective’ frequency of trait A, that is, the mean frequency of

individuals across the metapopulation from whom trait A might be acquired when

weighted by local social network connections, we get

1

n

n∑
j=1

[eijq
v
j ] = µ0K

2qv + µ1p
v2qv +

µ2

n

n∑
j=1

(pv
jq

v
j )p

v
i = α + βpv

i (5.7)

where both α = (µ0K
2 + µ1p

v2)qv and β = µ2

n

∑n
j=1(p

v
jq

v
j ) are identical for all

populations at generation t. The form (5.7) is then incorporated into (5.6).

Hence, the effect of the cultural niche construction on the spread of trait A

in population i is positively correlated with the frequency of trait E (e.g. the

education level) in this population. This phenomenon can be conceived as an

analogue of the rich-get-richer phenomenon (though concerning the frequencies

of trait E and A rather than actual wealth), whereby populations with a high

frequency of the cultural background trait E are more affected by the level of

trait A across the metapopulation, and subsequently adopt this trait faster than

populations with a low frequency of trait E (a similar phenomenon was found

by Bongaarts and Watkins, 1996). However, as both traits also vary over time

via vertical transmission, this simple analysis is not sufficient to characterize the
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overall complex behavior of this model. We therefore use a detailed simulation

analysis to explore the joint dynamics of the system (5.1) through (5.6).

We examine the correlation between the frequency of trait E, and the dif-

fusion of trait A across populations. In the following simulation runs n = 50,

c = 0.5, f = 0.1, h = 0.3, ψ = 0.1 and K = 1, unless otherwise stated. However,

the qualitative results are robust across a wide range of parameter values. All

populations start with relatively low frequencies of E and A (p0
i = q0

i = 0.05).

The rate of vertical transmission of trait E, (i.e. bi) in each population is ran-

domly selected at the beginning of the simulation from a uniform distribution on

the interval [0.5, 0.6], allowing for the level of cultural background (i.e., frequency

of E) in the various populations to diverge over time. Clearly, populations for

which bi is higher adopt the cultural background trait, E, faster (see, for exam-

ple, Figure 5.1A top panel, where the curves depicting the frequency of trait E

in the different populations are basically ordered according to the value of bi in

each population). Examining the spread of trait A using different values of µ0,

µ1 and µ2, the effect of the different modes of the metapopulation niche con-

struction is demonstrated clearly (Figure 5.1). While both global and local niche

construction result in trait A spreading across the various populations, applying

the local niche construction term also induces variation in trajectories for the

spread of A (Figure 5.1B)6. Bongaarts and Watkins (1996) have arbitrarily mea-

sured the demographic transition onset by a fall of 10 percent in fertility from its

pretransitional maximum. Here, we define trait A transition as the point in time

where qi > 0.5; however, similar results are obtained for other values. Examining

the transition onset in the various populations, Figure 5.1B demonstrates that

populations with higher frequencies of trait E (induced by higher transmission

coefficient values, bi), undergo trait A transition before populations with lower

trait E frequencies. However, the onset of a transition in trait A in each popu-

lation occurs at lower levels of trait E over time. Assuming that the frequency

of trait E is a measure of the development level in each population and trait

A represents the adoption of fertility-reduction preferences, this phenomenon is

similar to the one described in Bongaarts and Watkins (1996). The robustness of

this phenomena is further demonstrated in Figure 5.2, illustrating the resulting

dynamics under various modified parameter values.

6Using no niche construction (i.e. µ0 = 1, µ1 = µ2 = 0) results in a qualitatively similar be-
havior to that demonstrated for global niche construction where all the populations go through
the transition at the same time.

82



A µ0 = 0, µ1 = 1, µ2 = 0

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 p
i

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 q
i

B µ0 = 0, µ1 = 0, µ2 = 1

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 p
i

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 q
i

Figure 5.1: An illustration of a simulation run of the model. The different curves
depict the frequency of traits E (top panels) and A (bottom panels) for each of
the n = 50 populations in the metapopulation over 200 generations. Parameter
values are set to c = 0.5, f = 0.1, h = 0.3, ψ = 0.1, K = 1 and p0

i = q0
i = 0.05.

bi in each population is randomly selected from a uniform distribution on the
interval [0.5, 0.6] (populations for which bi is higher adopt trait E faster). In the
top panel of each figure, the curves change from thin lines to thick lines when
the frequency of A exceeds 0.5, indicating the onset of trait A transition (e.g.
the demographic transition). (A) Applying global niche construction yields a
uniform transition of trait A. (B) Local niche construction results in the various
populations going through the transition at different times though at ever lower
frequencies of trait E.

83



A c = 0.47

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 p
i

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 q
i

B f = 0.2

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 p
i

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 q
i

C h = 0.5

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 p
i

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 q
i

D ψ = 0.5

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 p
i

20 40 60 80 100 120 140 160 180 200
0

0.5

1

Generation

 q
i

Figure 5.2: An illustration of a simulation run of the model using various pa-
rameter values. Aside from the modified values listed in the title of each panel,
the parameters values are the same as the ones used in Figure 5.1B. Evidently,
while affecting the overall spreading dynamics of trait A, all the examined pa-
rameter values still result in a qualitatively similar phenomena where the onset
of a transition in trait A in each population occurs at lower levels of trait E over
time.
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The markedly different frequencies of trait E, at which the onset of trait A

transitions occur, suggests that this effect cannot be solely attributed to varying

horizontal transmission rates within each population. Clearly, if this were the

case, different populations would have experienced the onset of transition at

approximately the same level of local cultural background (i.e. pi u pj)
7. To

confirm the contribution of niche construction between populations we have

conducted an additional set of simulations in which the percolation of trait A

either within populations or between populations is examined in isolation. In

these simulations, local niche construction is still assumed (i.e. µ0 = µ1 = 0,

µ2 = 1), but slightly modified versions of horizontal transmission are used. These

modified horizontal transmission models are given by

qt
i−within = qt,v

i + (et
iiq

t,v
i )h(1− qt,v

i )[1 + ψ(2qt,v
i − 1)] (5.8)

qt
i−between = qt,v

i +
1

n− 1

n∑
j=1

[(et
ijq

t,v
j )(1− δij)]h(1− qt,v

i )[1 + ψ(2qt,v
i − 1)] (5.9)

where et
ij is still calculated according to (5.5) and δij denotes the Kronecker delta

function8. Expressions (5.8) and (5.9) thus partition the total effect of horizontal

transmission in the metapopulation (5.6) into two components, one accounting

only for the horizontal transmission within each population and the other ac-

counting only for horizontal transmission between different populations (leaving

out transmission within the populations). As demonstrated in Figure 5.3, within-

population niche construction indeed results in all the populations experiencing

the onset of trait A transition at approximately the same frequency of trait E.

Thus, the behavior demonstrated in Figure 5.1B can be attributed, almost in

its entirety, to the process of local cultural niche construction between popula-

tions. In the rest of the chapter we thus revert to the original model (i.e., using

Equations (5.3)–(5.6)).

The relationship between the variance in the time to reach trait A transition

and the level of local niche construction effect is illustrated further in Figure 5.4.

The variance is calculated for a set of simulation runs with varying degrees of local

niche construction coefficient, µ2. To maintain a similar overall communication

7Though not identical, as the rate of diffusion of trait E may differ across populations,
resulting, over time, in variation in the influence of within-population niche construction on
transition onset.

8The Kronecker delta is defined as having the value one when i = j, and zero when i 6= j.
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Figure 5.3: An illustration of the effect of within population (A) and between
population (B) niche construction (i.e., using Equations (5.8) and (5.9) instead
of Equation (5.6)). Aside from the modified version of horizontal transmission
described above, the parameters values are the same as the ones used in Fig-
ure 5.1B.
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Figure 5.4: The statistical variance of the time to reach trait A transition in the
metapopulation as a function of µ2. The curve represents the average of 100
simulation runs. For each value of µ2, we set µ1 = 1 − µ2. As demonstrated, a
higher level of local niche construction yields on average higher variance.

level, µ1 is set to 1− µ2 (µ0 = 0 in all simulations). Evidently, with higher levels

of local niche construction, the variance in the onset of transitions increases.

This measure could be used to estimate the relative contribution of global and

local niche construction modes in human societies that exhibit this pattern of

transition delay.

5.3.2 Invasion and Spread Analysis

The conditions for invasion and local stability of the four ‘corner’ equilibrium

states, denoted by Qi(0, 0, 0), Qi(1, 0, 0), Qi(0, 1, 0) and Qi(1, 1, 0) (where Qi(p̂i, q̂i, Di)

denotes the equilibrium state), are derived from the non-collapsed version of the

model (recursions (C.1)–(C.8)) and presented in Appendix C.4. In concordance

with the findings of Kendal et al. (2005), it is shown that the range of parameter

values under which trait A invades population i is positively related to both the

coefficient of global and local niche construction. Figure 5.5 provides an example,

showing the effect of global niche construction, µ1.

We also examine the spread of trait A across the metapopulation as a function

of the fertility selection, f , and the horizontal transmission coefficient, h, with
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Figure 5.5: The effect of the coefficient of conformity, ψ, and the effect of global
niche construction, µ1, on the region of invasion of trait A when perturbed from
Qi(0, 0, 0). µ1 = 1 (continuous line), µ1 = 0.8 (dashed line), and µ1 = 0.6
(dotted line), where, in all cases, an arbitrary value of p = 1

n

∑n
i=1 pi = 0.25 was

used. Trait A invades under each line, given by (C.19), in a single population.
In particular, note that for a high level of global niche construction, trait A
is predicted to invade under a lower coefficient of horizontal transmission, h,
for a given level of fertility selection, f , than for a low level of global niche
construction. Furthermore, global niche construction has less effect on the range
of parameters for which trait A invades at high levels of conformity than at
low levels of conformity. Finally, the invasion of trait A is not possible if the
conformity coefficient, ψ = 1. Although not shown, similar trends are evident
when the range of parameter values under which trait A invades population i
from Qi(1, 0, 0) is affected by local niche construction.

varying modes of niche construction. Using a simulation run of the MPCNC

model, we tested how many populations went through the trait A transition for

varying levels of f and h, both from 0 to 1. The total number of generations was

set to 200 to allow comparison with the dynamics described in Section 5.3.1 (other

simulation parameters are set as before). As demonstrated in Figure 5.6, higher

values of fertility selection require also a high level of horizontal transmission h

for trait A to spread. Thus, the effects of f and h on the trait A transition

are similar to their effects on the invasion of A (see, for example, Figure 5.5).

A comparison between Figure 5.6A and Figures 5.6B-D shows that, typically,

the conditions supporting trait A transition are less restrictive when no niche

construction is applied (i.e., µ1 = µ2 = 0) than under either global or local niche

construction. This finding, however, may be the result of the different baseline
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communication level, µ0. Note also, that in the case of µ0 = µ1 = µ2 = 0, no

horizontal transmission takes place and trait A will never spread due to its fitness

cost. Furthermore, as can be seen in Figure 5.6B-D, the conditions under which

trait A spreads do not change significantly when the balance between global and

local niche construction is varied. However, a comparison of the width of region II

in Figures 5.6B-D (representing parameter values in which some populations are

still in the pre-transitional state) indicates that the time to reach the transition

under certain h and f parameter values increases with the coefficient of local

niche construction (see also the discussion in Section 5.4).

5.3.3 Sensitivity Analysis

Here, we examine the relative sensitivity of the change in frequency of trait A

in population i over horizontal transmission, ∂∆qi, to a small change in the

frequency of trait E in population j, ∂pj, compared with a small change in the

frequency of trait E within population i, given by ∂pi. This is a measure of the

relative effect of niche construction between populations i and j compared to

within population i, on trait A adoption in population i. We find from (5.5) and

(5.6) that

∂∆qi

∂pj

∂∆qi

∂pi

=
2µ1pq + µ2piqj

2µ1pq + µ2(
∑n

k=1 pkqk + piqi)
, (5.10)

where p = 1
n

∑n
j=1 pj, q = 1

n

∑n
j=1 qj and ∆qi = 1

n

∑n
j=1(eijqj)h(1 − qj)[1 +

ψ(2qi − 1)]).

It is clear from (5.10) that if there is only global niche construction (i.e. µ1 > 0

and µ2 = 0),there is no difference in the sensitivity of ∆qi to a small change in

the frequency of trait E within population i compared to that in population j,

as all populations experience the same average network weightings (i.e. µ1p) and

thus are exposed to the same frequency of trait A (i.e. q). However, if there is

only local niche construction (i.e. µ1 = 0 and µ2 > 0), (5.10) is positively related

to µ2piqj (i.e., the frequency of trait A in population j that affects population i

as a result of local niche construction), and is negatively related to µ2

∑n
k=1 pkqk

and µ2piqi (i.e., both the total frequency of trait A across the metapopulation

and the frequency of trait A within population i that affects population i as a

result of local niche construction).
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Figure 5.6: The spread of trait A as a function of the fertility selection, f , and the
horizontal transmission coefficient, h, within the first 200 generations. Region I
represents f and h values for which all 50 populations reached trait A transition
(set arbitrarily as the point in time where qi > 0.5), while region III indicates
that the transition did not occur in any population. Region II represents an
intermediate case where some populations are post-transitional while others are
still in the pre-transitional state. Additional simulations, applying a larger num-
ber of generations, indicate that populations in region II eventually go through
the transition. Comparing (A) with (B-D), it is shown that using a different
baseline communication level, µ0, modifies the conditions under which trait A
spreads within 200 generations. (B-D) further demonstrate that varying balance
between the global and local niche construction terms has relatively little effect
on the spreading conditions (i.e. the regions of the h and f parameter space in
which populations go to transition), although, region II in Figure 5.6D indicates
that the variance in the spread of A under local niche construction may not allow
all the populations to experience the transition within the first 200 generations.
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If we consider the special case where the frequency of trait A is the same in all

populations (i.e. for any two populations, i and j, qi = qj = q), equation (5.10)

simplifies to

∂∆qi

∂pj

∂∆qi

∂pi

=
2µ1p + µ2pi

2µ1p + µ2(np + pi)
. (5.11)

Figure 5.7 shows that under these conditions, sensitivity of the change in the

frequency of trait A appears to be most affected by local niche construction (e.g.

µ1 = 0, µ2 = 1) between populations j and i compared to within population i

when the level of the cultural background in population i (or pi) is high. This

appears to be consistent with the rich-get-richer rule. Figure 5.7 further demon-

strates that the same holds when the mean level of the cultural background across

the metapopulation (or p) is particularly low and there are few populations (n)

in the metapopulation.

An additional illustration of the effect that different niche construction modes

may have on the spreading dynamics of trait A is shown in Figure 5.8. In this

simplified version of the model we consider only two populations (n = 2), and

examine the change in the frequency of trait A over a single generation as a

function of the frequencies of trait E in both populations using different niche

construction modes. The starting point of each arrow represents the frequencies

of trait E (p1 and p2) in the two populations. Both populations have the same

arbitrary initial A frequencies, q1 = q2 = 0.5. The horizontal and vertical com-

ponents of each arrow (i.e., its projections on the horizontal and vertical axes)

represent the change in the frequency of trait A in both populations, ∆q1 and

∆q2 respectively, after one generation.

Clearly, in the absence of niche construction, the frequencies of trait E have

no effect on the spread of trait A; ∆q1 = ∆q2 and they are equal for every p1

and p2 (Figure 5.8A). When global niche construction is applied (Figure 5.8B),

the spread of trait A is influenced by the cultural background and thus ∆q1

and ∆q2 vary for different values of p1 and p2. For example, when p1 and p2

are low, the horizontal transmission rate is not sufficient to overcome the cost

of fertility selection and the frequencies of trait A in both populations actually

go down. Note also that the length of the arrow is the same, where p1 + p2 is

constant, as all populations experience the same average network weightings and

are exposed to the same frequency of trait A. Furthermore, since in global niche
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Figure 5.7: The effect of local niche construction on the sensitivity of the change
in frequency of trait A in population i to the change in frequency of trait E in
population j, relative to the change in frequency of trait E within population i.
The vertical axis shows values for equation (5.11) while the other two axes show
the frequency of trait E in population i, pi, and the product of the number of
populations and the mean frequency of trait E across the metapopulation, np.

construction both populations are affected similarly by the average level of the

cultural background, ∆q1 = ∆q2, regardless of p1 and p2.

Only when the local niche construction mode is applied (Figure 5.8C), may

the change in frequency of trait A differ between populations. Apparently, as

also implied by (5.7), the spread of trait A is faster in the population with the

higher level of cultural background. In fact, in some cases, we may get opposing

dynamics of trait A in the two populations such that trait A spreads in one

population and declines in the other (see for example the arrow for p1 = 0.8,

p2 = 0.1). These findings again demonstrate the rich-get-richer phenomenon

we have found in our initial analysis, whereby a higher level of trait E in one

population (e.g., population 1 in the case where p1 > p2), entails a faster spread

of trait A or even determines whether trait A will spread or not in that population.
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Figure 5.8: The change in the frequency of trait A in two populations over a
single generation as a function of the frequency of trait E in these populations
using different modes of cultural niche construction. The origin of each arrow
represents the starting frequencies of trait E in the two populations (p1 and p2).
In both populations, b (the vertical transmission coefficient of trait E) is set to
0.5. The horizontal and vertical components of each arrow (i.e., its projections
on the horizontal and vertical axes) represent respectively the change in q1 and
q2 in a single generation. Both populations have the same initial A frequencies,
q1 = q2 = 0.5. The lengths of the arrows in each panel are scaled to fit the image
grid.
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5.4 Discussion

The MPCNC model examines the process of cultural niche construction in a

metapopulation, extending previous models of niche construction in an unstruc-

tured population. Using a novel approach for cultural niche construction, we

represent the cultural background as a dynamic social network on which other

traits may percolate. This approach fuses two fundamental concepts of cultural

evolution (namely, social networks and niche construction) and facilitates the

analysis of markedly more realistic social interactions: Social networks, the vehi-

cle of cultural evolution, are not static, but rather change over time, often owing

to the evolutionary dynamics of other co-evolving cultural traits. As was demon-

strated by our results, this manifestation of cultural niche construction should

not be ignored.

Notably, analysis of our model reveals significantly different dynamics from

those observed in an unstructured population facing only a global niche construc-

tion process. The spread of trait A in each population is affected not only by

the level of trait E in that population but also by the level of both traits in the

rest of the metapopulation. In particular, we find that introducing local niche

construction results in the onset of trait A transition in each population occur-

ring later at lower levels of trait E. The contribution of between (vs. within)

population niche construction to this phenomenon has also been validated. Ap-

plying this model to the case of development (or education) and fertility control,

we find that it can account for the interesting dynamics previously reported by

Bongaarts and Watkins (1996), namely, the onset of the demographic transition

in different countries occurring at ever lower levels of development.

The relative frequency of global and local niche construction does not appear

to have a significant impact on the regions of the h and f parameter space in

which populations go through the transition in the long term (see Figure 5.6).

However, for certain h and f values, local niche construction yields a slower

spread of trait A in comparison to global niche construction (see, for example,

region II in Figure 5.6D), preventing some populations from going through the

transition in a limited time (e.g., 200 generations). This finding coincides with

our intuition that second order processes control fine-tuned details of the system

whereas the overall dynamics are not affected.

Finally, our study reveals a number of interesting characteristics associated

with local niche construction. For instance, local niche construction can yield
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different (or even opposing) dynamics in each population, and typically appears

to facilitate the rich-get-richer rule. Furthermore, the effect of local niche con-

struction between populations, relative to within a population, is sensitive to the

number of populations in the metapopulation, n.

An additional characteristic of the demographic transition is the observation

that rich families reduce their fertility earlier and to a greater degree than poor

families. To some extent, the analysis presented in this chapter can be inter-

preted as describing semi-isolated subsections of a single population, rather than

multiple interacting populations. The resulting dynamics can thus also provide

an explanation for this second characteristic.

The MPCNC model can be extended further to embody better the complex

social interactions that exist in modern human societies. Bongaarts and Watkins

(1996) describe several types of social interactions (the transmission of informa-

tion and ideas, joint evaluation and social influence), but also several levels of

social interaction channels (e.g., local, national and global). A more complex

social network that may comprise of several hierarchies can encapsulate some of

these concepts and may shed light on the importance of multi-level transmission.

Similarly, there may exist more than two interacting traits, and a more elabo-

rate interaction scheme. Furthermore, our model, as most traditional models of

niche construction, assumes that the background trait evolves independently and

is not affected by the niche it generates. Specifically, we assume that trait E is

transferred only vertically, and does not percolate across the same social network

that it itself creates. Although reasonable, it may be interesting to relax this

assumption and allow a significantly more complex model where the evolution of

trait E not only shapes the social network but is also affected by it (as may be

the case, for example, in education over the Internet).

The model presented in this chapter further assumes that people do not mi-

grate from one population to the other. Clearly, migration can have a strong

impact on the resulting dynamics. For example, an unbiased migration (i.e.

a process where people migrate randomly from one population to another) may

serve as an equalizing force, reducing the variance in the frequency of the cultural

traits between populations. To some extent, such dynamics may be analogous

to increasing the coefficient of global niche construction (which depends only on

the overall frequency of the cultural background in the metapopulation) while re-

ducing the local niche construction coefficient. Other models may assume biased
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migration where people are more likely to migrate from large populations (e.g.

due to increased fertility) to smaller ones, or from less developed populations to

highly developed ones. The effect of such migration schemes could be further

examined through an extension of the MPCNC model that embodies this plau-

sible process. The current model also assumes that adopting trait E does not

entail any fitness cost. However, considering the case of development and fertility

control, and the expenses associated with acquiring education, applying a fitness

cost to the adoption of trait E may be an additional reasonable extension. In

principle, however, a simple cost function should not qualitatively change the

resulting dynamics induced by this model but it may slow down the spread of

trait E and consequently may also hinder trait A transition.

Clearly, as extensive as the model may be, it can still encapsulate only a

fraction of the real-world social interaction dynamics. However, we believe that

our approach, incorporating both the cultural evolution processes and the evo-

lution of the social network underlying these processes, can contribute to the

understanding of central issues concerning the spread of cultural traits in human

societies.
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Chapter 6

Discussion

This dissertation presents several studies of the interaction between various life-

time adaptation mechanisms and the evolutionary process. In particular, we

provide a rigorous mathematical analysis for the beneficial effect of phenotypic

plasticity on evolution in multipeaked fitness landscapes and demonstrate also

how a simple form of imitative learning within generations can enhance the evo-

lution of autonomous agents. We further corroborate the fundamental evolution-

ary link between the capacity to imitate and the neuronal mirror system, using

a novel framework of evolutionary adaptive agents. Finally, we analyze a model

of cultural niche construction in a metapopulation and show how the resulting

dynamics can account for complex social phenomena. The common theme of the

findings presented above is the marked and bidirectional influence of the interplay

between evolution and learning: Lifetime adaptation (in the form of either pheno-

typic plasticity or imitative learning) has been shown to dramatically accelerate

the rate of the evolutionary process. Mechanisms underlying lifetime adaptation

can be explained best by the evolutionary history that produced them.

This conclusion has an interesting bearing on the centuries old debate con-

cerning Nature vs. Nurture, where researchers of biology, psychology, and social

sciences argue about the relative importance of genetic factors vs. lifetime experi-

ence. Specifically, these researchers study how much of the individual differences

in both physical and behavioral traits can be attributed to heredity and how

much is determined by the environment. This debate, which can be dated back

to the 13th century (Groff and McRae, 1998), remains a central topic of current

research. This dissertation emphasizes that nature and nurture are strongly in-

terlinked and that it is the interplay between them that produces many of the

phenomena involved in our evolution.
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In Chapter 2 we have shown that simple phenotypic plasticity schemes, includ-

ing deterministic learning, stochastic learning, partial learning, and even random

variation can accelerate and enhance the evolutionary process. An analogous

phenomena was also observed in Chapter 3, in a scenario where such a beneficial

effect is less intuitive: It was shown that imitative learning within a generation

can also improve the evolutionary search although demonstrators within the pop-

ulation do not necessarily possess significantly improved knowledge. While the

gain of lifetime learning is obvious in changing environments (allowing individuals

to adapt to rapid changes that cannot be tracked by the evolutionary process),

interestingly, our findings corroborate the benefit of learning and imitation also

in fixed environments. We believe that such an adaptive benefit may contribute

to the direct evolution of the mechanisms enabling learning and imitation. This

wide-ranging advantageous effect of lifetime learning may account for the abun-

dance of adaptation mechanisms found in nature. It would hence be interesting

to examine whether a correlation between the level of plasticity displayed by var-

ious organisms and the adaptive value of learning induced by the environment

they inhabit can be discovered.

There are also several fundamental principles revealed by our study. Our

analysis has demonstrated the major role of the fitness landscape structure in

determining the effect of plasticity on the rate of evolution. It was shown that

learning indeed accelerates evolution in multipeaked landscapes but may hinder

evolution in a simple unimodal scenario. Unfortunately, fully characterizing the

structure of biological fitness landscapes is still far of our reach. Several promis-

ing attempts to detect structural attributes of the fitness landscape have been

recently presented (Korona et al., 1994; Burch and Chao, 1999; Fong et al., 2005),

providing evidence, for example, for the existence of multiple adaptive peaks. A

slightly less ambitious task, which is currently at the forefront of molecular evo-

lution research, is the characterization of the selection coefficient distribution in

the vicinity of an adaptive peak (e.g., Nielsen and Yang, 2003). Some of the

above studies apply a novel approach of experimental evolution of microorgan-

isms in the lab. We hope that additional such experiments will be performed

in the coming years and believe that such direct observations of an evolutionary

process in progress are invaluable. Other experimental studies, focusing directly

on the effect of learning on evolution, have also been recently presented (Mery

and Kawecki, 2004).
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Our analysis also suggests that plasticity has a beneficial effect on evolution

when genotypes with low innate fitness values gain more through plasticity than

genotypes with high innate fitness values, a property that is largely governed by

the correlation between the genotypic and phenotypic spaces. Alas, as in the case

of the fitness landscape structure, the mechanisms controlling plasticity and the

adaptation dynamics they yield are still far from being completely characterized

or understood.

Another interesting result stemming from the mathematical analysis pre-

sented in Chapter 2 is the increased rate of evolution in neutral regions of the

landscape vs. rugged regions of positive and negative selection. It is tempting to

relate this finding to the concept of neutrality (Schuster et al., 1994), robustness

(de Visser et al., 2003) and designability (Kussell, 2005), studied in molecular

evolution. Genetic robustness, the excess abundance of neutral mutations in a

given genotype, can be conceived as the molecular evolution equivalent of the

flat landscapes produced by ideal learning. It has also been shown that increased

neutrality can facilitate the evolutionary process by allowing an evolving popula-

tion to explore vast regions of the fitness landscape (Huynen et al., 1996b). This

adaptive value of genetic robustness, induced by the structural attributes of the

fitness landscape, is again analogous to the beneficial effect of lifetime learning

demonstrated in our study. It has been hypothesized that the level of neutrality

itself can evolve and increase during evolution (van Nimwegen et al., 1999). In

a recent study (Borenstein et al., 2006a), focusing on the genetic robustness of

MicroRNAs, we have provided a first biological evidence that the level of neutral-

ity indeed increases throughout the evolutionary process and that this increase

is directly selected for by evolution. Considering the analogy between genetic

robustness and lifetime learning discussed above, this evidence for direct selec-

tion for robustness further strengthens our hypothesis that learning mechanisms

may have been selected for by evolution owing to their beneficial effect of the

landscape structure.

A major share of this dissertation addresses learning by imitation. The study

of imitation has been brought back to the center of attention in recent years (Prinz

and Meltzoff, 2002) and our motivation for studying imitative learning in the con-

text of its interaction with evolution has been presented before (see Chapter 1).

Our study is motivated additionally by the longstanding puzzle about how “self”

and “other” are coded within our brain (Meltzoff, 1996). According to Prinz and
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Meltzoff (Prinz and Meltzoff, 2002), there are two basic issues that need to be

addressed by any theory of imitation: (i) How are actions perceived? (ii) How can

similarity be effective between perception and action? Studying the perception

and performance of actions in imitating agents from an evolutionary standpoint

sheds new light on imitation in humans and primates and ultimately improves

our knowledge regarding the issues raised by Prinz and Meltzoff. We believe that

our research approach, focusing on the emergence of imitation in evolutionary

autonomous agents can highlight the common underlying principles that give

rise to imitative behavior. Moreover, we do not only address the questions posed

above, but also tackle an additional fundamental question: “If there is indeed

a qualitatively unique mechanism (or device) in the brain that can account for

imitative ability, how could such a mechanism have evolved?”

Additionally, our model for the emergence of imitative learning in evolution-

ary adaptive autonomous agents embodies a simple, yet biologically plausible

mechanism of imitative behavior, facilitating a systematic study of its structure

and dynamics. The analysis of the resulting neurocontrollers reveals neural de-

vices analogous to those found in biological systems, including clear examples

of internal coupling between observed and executed actions. Further analysis of

the network adaptation dynamics demonstrates the innate nature of these in-

ternal links with direct bearing on one of the key questions in imitation theory,

concerning the ontogeny of mirror neurons (Meltzoff, 2002; Hurford, 2003).

Finally, the effect of cultural evolution in a metapopulation was also exam-

ined and shown to result in intriguing dynamics. Our study combines cultural

evolution models, a population genetics mathematical framework and social net-

work concepts to analyze the effect of cultural niche construction. We show how

a simple model can account for puzzling social phenomena that cannot be clearly

understood without considering the reciprocal effect between different popula-

tions and between several evolving cultural traits. This research also exemplifies

the added-value of combining theories and models from various disciplines.

As discussed in each of the pertaining chapters, the mathematical and compu-

tational models utilized in these studies clearly cannot encapsulate the full variety

and complexity of the adaptation mechanisms found in nature. Each model can

be extended to incorporate additional parameters, elements, assumptions, and

processes. However, focusing on the fundamental and universal properties of the

interaction between learning and evolution, we believe that it is often the sim-
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plicity of these models and the robustness of the results obtained that testify

to their biological validity. These models form a promising test-bed for studying

further central questions concerning the interplay between the various adaptation

mechanisms found in nature.

Studying the dynamics of evolving populations of adaptive individuals is still

far from complete. The range of mathematical and computational tools utilized

in this dissertation exemplifies the challenge facing researchers in this field. We

believe that the studies included in this dissertation form an important contri-

bution to this topic. However, as in most scientific disciplines, each such study

raises new and exciting research questions and only highlights how much is yet to

be discovered. We hope that as more genetic, neurological and phycological data

continue to accumulate, our understanding of these complex and fundamental

processes, combining genetic evolution, learning, imitation and culture, will grow

and evolve.
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Appendix A

Mean First-Passage Times of a
Simple Random Walk in an
Arbitrary Environment

First, we clarify the distinction between the well established theory of Random-

Walk in Random-Environments (RWRE) and our analysis: The theory of RWRE

deals with the scenario where the probabilities to take a +1 or −1 step are

independently chosen from some distribution on (0, 1), characterizing sub-linear

or linear speed and large deviation questions. Our analysis, in contrast, relates to

the simpler setup of a random walk on a finite set, but allows these probabilities

to be arbitrary given constants.

A.1 One-Dimensional Random Walk: General

Form and Pertaining Examples

Consider a simple random walk St in a changing environment on {0, 1, 2, . . . , N}.
Let pi = P (St+1 = i + 1|St = i) and let qi = 1− pi = P (St+1 = i− 1|St = i). Let

p0 = 1 and assume that 0 < pi < 1 for all 0 < i < N . Let Ej
i denote the mean

first-passage time from i to j, i.e., the expected time to first hit j starting at i.

We get E1
0 = 1 and the recursion

Ei+1
i = 1 + pi · 0 + (1− pi)[E

i
i−1 + Ei+1

i ] , i = 1, 2, . . . , N − 1 . (A.1)

Letting ρi denote the odds-ratio 1−pi

pi
, Eq. (A.1) may be written as

Ei+1
i = 1 + ρi[1 + Ei

i−1]
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whose solution can be easily seen to be

Ei+1
i = 1 + 2

i∑
j=1

i∏

k=j

ρk .

As EN
0 =

∑N−1
i=0 Ei+1

i we finally obtain

EN
0 = N + 2

∑
i≤j

0<i,j<N

j∏

k=i

ρk .

Interestingly, this expression for the mean first-passage time from 0 to N can also

be represented as the quadratic form

EN
0 = 1′Ã1 (A.2)

where

Ã =




1 ρ1 ρ1ρ2 ρ1ρ2ρ3 ρ1ρ2ρ3ρ4 · · · ∏N−1
k=1 ρk

ρ1 1 ρ2 ρ2ρ3 ρ2ρ3ρ4 · · · ∏N−1
k=2 ρk

ρ1ρ2 ρ2 1 ρ3 ρ3ρ4 · · · ∏N−1
k=3 ρk

ρ1ρ2ρ3 ρ2ρ3 ρ3 1 ρ4 · · · ∏N−1
k=4 ρk

...
. . .

...∏N−1
k=1 ρk

∏N−1
k=2 ρk

∏N−1
k=3 ρk · · · ρN−2ρN−1 ρN−1 1




.

In particular, consider the following examples, demonstrating the mean first-

passage time in a constant environment:

Example 1: Constant symmetric environment

In a constant symmetric environment, pi ≡ 1
2

(ρi ≡ 1) for all 0 < i < N , and

Ã = 11′, the matrix of ones (N ×N). The quadratic form (A.2) then yields

EN
0 = N2.

Example 2: Constant nonsymmetric environment

In this scenario pi ≡ p 6= 1
2

(ρi ≡ ρ 6= 1) for all 0 < i < N , and

Ã =




1 ρ ρ2 ρ3 · · · ρN−1

ρ 1 ρ ρ2 · · · ρN−2

ρ2 ρ 1 ρ · · · ρN−3

...
. . .

...
ρN−1 ρN−2 ρN−3 · · · ρ 1




.
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The quadratic form (A.2) can be easily seen to yield EN
0 = N 1+ρ

1−ρ
+ 2ρ ρN−1

(ρ−1)2
,

inducing a linear first-passage time (in N) if ρ < 1 and an exponential first-

passage time if ρ > 1.

Now, consider the indices x1 < x2 < . . . < xK where ρxi
6= 1 (pxi

6= 1
2
).

Define also x0 = 0 and xK+1 = N . Let ni = xi − xi−1 (i = 1, 2, . . . , K + 1)

denote the corresponding increments. As ρxi+1, ρxi+2, . . . , ρxi+1−1 all equal 1 for

each 0≤ i≤K, Ã consists of rectangular blocks and EN
0 = 1′Ã1 = V ′AV , where

V = (n1, n2, . . . , nK+1)
′ and

A =




1 ρx1 ρx1ρx2 ρx1ρx2ρx3 ρx1ρx2ρx3ρx4 · · · ∏K
k=1 ρxk

ρx1 1 ρx2 ρx2ρx3 ρx2ρx3ρx4 · · · ∏K
k=2 ρxk

ρx1ρx2 ρx2 1 ρx3 ρx3ρx4 · · · ∏K
k=3 ρxk

ρx1ρx2ρx3 ρx2ρx3 ρx3 1 ρx4 · · · ∏K
k=4 ρxk

...
. . .

...∏K
k=1 ρxk

∏K
k=2 ρxk

∏K
k=3 ρxk

· · · ρxK−1
ρxK

ρxK
1




.

Thus,

EN
0 =

K+1∑
i=1

n2
i + 2

∑
i≤j

0<i,j<K+1

ninj+1

j∏

k=i

ρxk
. (A.3)

In particular, consider the following example, compactly describing the first-

passage time in a typical “flattened” ideal learning landscape:

Example 3: Symmetric random walk with K equally distant distur-

bances

In this scenario we get xi = i N
K+1

and ni ≡ n = N
K+1

for all 0 < i ≤ K + 1. Eq.

(A.3) then yields

EN
0 =

N2

K + 1
+ 2

N2

(K + 1)2

∑
i≤j

0<i,j<K+1

j∏

k=i

ρxk
.
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A.2 One-Dimensional Random Walk: An Asymp-

totic Bound

We will now turn to analyze an asymptotic bound for EN
0 . Define the “draw-

down” R of the random walk process as the maximal element of A, that is,

R = max
i≤j

0≤i,j<K+1

∏j
k=i ρxk

. We want to find bounds on EN
0 in terms of R. Clearly,

max(N, 2R) ≤ EN
0 ≤ N2R. In fact, as we shall now see, EN

0 ≤ N2(1+R
2

) and this

bound is in some sense asymptotically sharp. We first consider the case where R >

1 and analyze the quadratic form V ′AV obtained above. Fix all K values ρi 6= 1

as given, but allow Y = (y1, y2, . . . , yK+1) = 1
N

(n1, n2, . . . , nK+1) to vary in its

feasible set FSN = {(y1, y2, . . . , yK+1)|yi ≥ 0,
∑

yi = 1, Nyi positive integers},
a subset of FS∞ = {(y1, y2, . . . , yK+1)|yi ≥ 0,

∑
yi = 1}. Then max

Y ∈FSN

(Y ′AY ) ≤
max

Y ∈FS∞
(Y ′AY ), and the two are close to each other if K ¿ N .

Claim: max
Y ∈FS∞

(Y ′AY ) = 1+R
2

Proof:

(i) For ρi < 1, fix all yj except yi and yi+1 and fix yi + yi+1 = T . Then Y ′AY

is a convex quadratic function of yi so one of yi and yi+1 should be zero.

This means that all ρi < 1 should “collapse” (i.e., be at distance zero) to

a neighboring ρj > 1. Furthermore, all ρi < 1 left of the leftmost ρj > 1

(be that at j0) collapse to location zero and all ρi < 1 to the right of the

rightmost ρj > 1 (be that at j1) collapse to location N .

(ii) This leaves us with a reduced matrix Â of size (K̂+1)×(K̂+1), K̂ ≤ K,

with ρi > 1 for all 0 < i ≤ K̂. We claim that max(Ŷ ′ÂŶ ) is achieved by

collapsing all ρ’s from j0 to j1 into one point in the exact middle. This will

give

(
1
2

1
2

) (
1 R
R 1

)(
1
2
1
2

)
=

1 + R

2
.

Suppose that max
bY

(Ŷ ′ÂŶ ) is achieved at a vector (y1, y2, . . . , y bK+1) with

yi > 0 for each i = 1, 2, . . . , K̂+1. Then this vector must achieve a zero of

the derivative of the Lagrangian Ŷ ′ÂŶ −λ(1′Ŷ − 1), yielding Ŷ = C · Â−11.

But if
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Â =




1 ρ1 ρ1ρ2 · · ·
ρ1 1 ρ2 · · ·

ρ1ρ2 ρ2 1 · · ·
...

. . .
...

· · · ρ bK 1




then Â−1 is a symmetric tri-diagonal matrix with

Â−1(1, 1) = −1
ρ2
1−1

, Â−1(K̂+1, K̂+1) = −1
ρ2

K−1
,

Â−1(i, i) = −(1 + 1
ρ2

i−1−1
+ 1

ρ2
i−1

) for all 1 < i ≤ K̂ , and

Â−1(i, i+1) = Â−1(i+1, i) = ρi

ρ2
i−1

for all 1 ≤ i ≤ K̂ .

So

(Â−11)(1) = Â−1(1, 1) + Â−1(1, 2) = −1
ρ2
1−1

+ ρ1

ρ2
1−1

> 0 ,

(Â−11)(K̂+1) = Â−1(K̂+1, K̂) + Â−1(K̂+1, K̂+1) =
ρ bK

ρ2
bK−1

+ −1
ρ2

K−1
> 0 ,

but

(Â−11)(i) = Â−1(i, i− 1) + Â−1(i, i) + Â−1(i, i + 1) = ρi−1

ρ2
i−1−1

− (1 + 1
ρ2

i−1−1
+

1
ρ2

i−1
) + ρi

ρ2
i−1

< 0 for all 1 < i < K̂+1.

As we see, K̂ = 1 is the only feasible value and the problem reduces to

(
y1 1− y1

) (
1 R
R 1

)(
y1

1− y1

)
= 1 + 2(R− 1)y1(1− y1)

which for R > 1 has a maximum at y1 = 1
2
, as claimed.

In the case of R = 1, let all ρi < 1 stick to 0 or N as before. We obtain a flat

environment, for which EN
0 = N2.

So, the final answer is

EN
0 ≤ N2(

1 + R

2
)

and this is asymptotically sharp in the sense above, where K ¿ N . Hence, R is

the critical factor determining the passage time in a given landscape.
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A.3 Multidimensional Random Walk

In contrast to a one-dimensional random walk process, a multidimensional walk,

propagating from a predefined starting point to another predefined end point, can

take any of numerous pathways. Clearly, the characteristics of each pathway, and

in particular the walk probabilities assigned to each location, determine both the

dynamics of the walk along this pathway and the likelihood of choosing it. Con-

sider all the possible pathways from this starting point to the end point on a given

landscape. Each of these pathways can be conceived as a simple one-dimensional

“landscape”, which in turn induces a specific drawdown value. We argue that in

arbitrary environments, these drawdown values will significantly differ from each

other, exhibiting a roughly exponential distribution. The essential uniqueness of

drawdown trajectories is similar in nature to that obtained for upper bounds by

Deuschel and Zeitouni (1999) in the problem they handle, bearing some rough

similarity to ours. This argument stems directly from the strong exponential ef-

fect of the pathway drift (manifested by the values of the odd-ratios ρi along the

pathway) on the drawdown value. We will term the pathway with the minimal

drawdown value ‘the Principal-Pathway’ and the drawdown value it induces ‘the

Principal-Pathway drawdown’. Considering the correlation between the first-

passage time and the drawdown value in one-dimensional landscapes, we thus

conjecture that all pathways apart from the Principal-Pathway are in fact irrele-

vant. Essentially, the random-walk process will take place along a “sausage”-like

region around that minimal drawdown pathway and can be regarded as “almost”

a one-dimensional process. The expected first-passage time will thus be domi-

nated by the Principal-Pathway drawdown in an analogous manner to that shown

in the one-dimensional case.

To generate rugged multidimensional fitness landscapes with a tunable draw-

down value we use the following modified versions of the generalized Rastrigin and

Schwefel functions, widely used multimodal benchmark functions (Mühlenbein

et al., 1991; Salomon, 1996; Ballester and Carter, 2004):

FRastrigin(~x) = −Cr · d−
∑d

i=1 x2
i + Cr · cos(2πxi) Cr ∈ [1, 4]

xi ∈ {−5.0,−4.8, . . . , 0}

FSchwefel(~x) = −Cs ·
∑d

i=1(−xi sin(
√
|xi|)) Cs ∈ [0.001, 0.015]

xi ∈ {−500,−460, . . . , 420}

108



A

5 10 15 20 25 30
0

50

100

150

log(R)

B

5 10 15 20 25 30
0

50

100

150

log(R)

C

5 10 15 20 25 30
0

50

100

150

log(R)

D

5 10 15 20 25 30
0

50

100

150

log(R)

E

5 10 15 20 25 30
0

50

100

150

log(R)

F

5 10 15 20 25 30
0

50

100

150

log(R)

G

5 10 15 20 25 30
0

50

100

150

log(R)

H

5 10 15 20 25 30
0

50

100

150

log(R)

Figure A.1: The distribution of drawdown values across randomly selected path-
ways on fitness landscapes with varying ruggedness. (A-D) Drawdown values dis-
tribution on two-dimensional landscapes with increasing ruggedness. The land-
scapes are generated with the modified Rastrigin function described above with
Cr coefficient of 2.4, 3.0, 3.5 and 4 respectively. The logarithm of the Principal-
Pathway drawdown for these landscape is 3.702, 4.787, 5.692 and 6.596 respec-
tively. (E-H) Drawdown values distribution on three-dimensional landscapes
with increasing ruggedness. The Cr values and Principal-Pathway drawdowns
are similar to those described in the two-dimensional case.

where d denotes the dimension (see also Figure 2.2A). These modified versions

are designed so that the global optimum is located at one corner of the hypercube

on which the function is defined and the starting point can be positioned on the

opposite corner, at a relatively low-fitness value. Cr and Cs provide a simple

way to control the ruggedness of the landscape (and consequently, the drawdown

value it induces).

We validate our conjecture regarding the drawdown values distribution across

various pathways numerically, using the modified Rastrigin function defined above.

A set of two-dimensional and three-dimensional landscapes with varying draw-

down values was generated. For each such landscape, a sample of 1000 pathways

from the starting point (-5,-5) to the global optimum point (0,0) was randomly

selected with uniform probability and the drawdown value of each pathway was

calculated. For simplicity, we limit our sampling to forward oriented pathways

(i.e. pathways composed of exactly d(n− 1) steps, wherein d denotes the dimen-

sion, n denotes xi resolution in each dimension and each step is a positive step in

one of the dimensions). Although actual pathways may be more complex and can
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include also negative steps, this subset is sufficient to demonstrate the drawdown

values distribution. Furthermore, considering only forward oriented pathways,

we can calculate the Principal-Pathway drawdown using dynamic programming

whereby for each point in the multidimensional space, the Principal-Pathway

drawdown to that point can be obtained according to the values calculated for

points that may preceded it in the pathway. Figure A.1 illustrates the resulting

distribution of drawdown values for several landscapes. Evidently the varia-

tion in drawdown values induced by randomly selected pathways is extremely

large (note that the distribution is drawn on a logarithm scale), and increases

markedly with the ruggedness of the landscape. Moreover, as predicted above,

the Principal-Pathway drawdown is markedly smaller than the drawdown of a

randomly selected pathway.
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Appendix B

Numerical Simulations for
Studying the Effect of
Phenotypic Plasticity on
Evolution

B.1 The Evolutionary Process

A one-dimensional innate fitness function was defined on the interval [1, 200] as

a sum of several Gaussian functions, yielding a continuous, multipeaked function

F (x) (Figure 2.5A, solid line). Various plasticity schemes were then applied (see

below) to produce the corresponding effective fitness functions.

The evolutionary process was simulated as a simple random walk. The RW

probabilities in each location i are calculated as: pi = BT (F+
i ) = 1/[1 + e(F−i −F+

i )/T ],

qi = BT (F−
i ) = 1/[1 + e(F+

i −F−i )/T ] where F+
i = F (i + 1), F−

i = F (i − 1) (us-

ing the effective fitness function in the plastic mode), and BT (x) denotes the

Boltzmann scaling (Mitchell, 1998) with fixed temperature T = 0.1. The genetic

configuration x in the first generation of each evolutionary trial was set to 1.

To evaluate the convergence rate of an evolutionary process numerically, two

measures are considered. First, the first-passage time of each genetic configura-

tion provides a direct measure of the progress rate of the evolutionary process.

Second, the population mean innate fitness value in each generation provides a

good estimate for the genetic quality of the evolving individuals and allows us to

track the extent of the Baldwin effect, i.e., how well did the genetically encoded

solution approach the optimal one (Mayley, 1997). Clearly, evolving individuals

in the plastic mode are ultimately evaluated according to their effective fitness
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value (that is, their fitness after phenotypic plasticity takes place), which may be

higher than their innate fitness value. However, here we focus on the rate of the

evolutionary process, tracking down the genetic assimilation.

B.2 Deterministic and Stochastic Learning

Ideal deterministic learning is implemented as a simple iterative hill climbing

process. Hill climbing iterations are performed until reaching the local maxima

and no further improvement is possible. Partial deterministic learning was ex-

amined using a learning scheme which applies a limited number of hill climbing

iterations. The resulting effective fitness functions are illustrated in Figure 2.5A.

In stochastic learning, each individual employs 100 SA (simulated annealing)

iterations during its lifespan to determine its effective fitness value. Let Si denote

the individual’s current configuration. In each iteration, one of the adjacent

configurations (±1) is selected at random as a candidate for a new configuration

Sj. If F (Sj) > F (Si) the new configuration becomes the current configuration.

Otherwise, Sj becomes the current configuration with probability e(F (Sj)−F (Si))/T

where T denotes a temperature parameter that cools from 1 to 0 throughout the

learning process.

B.3 Random Phenotypic Variation

Given an individual with genetic configuration x, we define Fefc(x) = F (xv)

where xv is randomly chosen with a uniform distribution from the interval [x −
∆d, x + ∆d]. ∆d thus represents the range of phenotypic variation allowed by

some developmental process. This random perturbation is performed anew in

each generation throughout the simulation run.

B.4 Numerical Extensions of the Random Walk

Model

For the random walk with static periods extension, the process described in

Section B.1 is extended to allow staying in the same genetic configuration, i,

with a probability zi. The RW probabilities in each location i are calculated

as: pi = BT (F+
i ) = eF+

i
/T

C
, qi = BT (F−

i ) = eF−
i

/T

C
, zi = BT (Fi) = eFi/T

C
where
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Fi = F (i) and C is a normalization factor (letting pi + qi + zi = 1).

In the case of random walk with Kimura’s fixation probabilities, we calculate

for each genetic configuration i, the selection coefficient s for each of the two

mutants (i+1 and i− 1), s±i = F±
i /Fi− 1. We then calculate the fixation proba-

bility, u, of each of the two mutants as follows: If |s| is small (i.e., |s| ≤ 1/Ne), we

use Kimura’s fixation probability for neutral mutations, u = 1/(2Ne). Otherwise

u = (1 − e−4Nesm)/(1 − e−4Nes), where Ne denotes the effective population size

and m = 1/2Ne denotes the initial frequency of the mutant. In the simulations

described in this study we use Ne = 100. We set the RW probabilities, pi = u+,

qi = u− and zi = 1− pi − qi.
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Appendix C

MPCNC Model Recursions

C.1 Vertical Transmission

After independent vertical transmission of each of E/e and A/a, the frequency

of the four cultural types in the offspring generation are given by

Wix
t,v
22,i = (1− f)c3,i[b3,ix

t−1
22,i

2
+ (b1,i + b2,i)x

t−1
22,ix

t−1
12,i + b0,ix

t−1
12,i

2
]

+(1− f/2)c2,i[b3,ix
t−1
22,ix

t−1
21,i + b2,ix

t−1
22,ix

t−1
11,i + b1,ix

t−1
21,ix

t−1
12,i + b0,ix

t−1
12,ix

t−1
11,i]

+(1− f/2)c1,i[b3,ix
t−1
22,ix

t−1
21,i + b2,ix

t−1
21,ix

t−1
12,i + b1,ix

t−1
22,ix

t−1
11,i + b0,ix

t−1
12,ix

t−1
11,i]

+c0,i[b3,ix
t−1
21,i

2
+ (b2,i + b1,i)x

t−1
21,ix

t−1
11,i + b0,ix

t−1
11,i

2
] (C.1)

Wix
t,v
21,i = (1− f)(1− c3,i)[b3,ix

t−1
22,i

2
+ (b1,i + b2,i)x

t−1
22,ix

t−1
12,i + b0,ix

t−1
12,i

2
]

+(1− f/2)(1− c2,i)[b3,ix
t−1
22,ix

t−1
21,i + b2,ix

t−1
22,ix

t−1
11,i

+b1,ix
t−1
21,ix

t−1
12,i + b0,ix

t−1
12,ix

t−1
11,i]

+(1− f/2)(1− c1,i)[b3,ix
t−1
22,ix

t−1
21,i + b2,ix

t−1
21,ix

t−1
12,i

+b1,ix
t−1
22,ix

t−1
11,i + b0,ix

t−1
12,ix

t−1
11,i]

+(1− c0,i)[b3,ix
t−1
21,i

2
+ (b2,i + b1,i)x

t−1
21,ix

t−1
11,i + b0,ix

t−1
11,i

2
] (C.2)
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Wix
t,v
12,i = (1− f)c3,i[(1− b3,i)x

t−1
22,i

2
+ (2− b1,i − b2,i)x

t−1
22,ix

t−1
12,i

+(1− b0,i)x
t−1
12,i

2
]

+(1− f/2)c2,i[(1− b3,i)x
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22,ix

t−1
21,i + (1− b2,i)x

t−1
22,ix

t−1
11,i

+(1− b1,i)x
t−1
21 xt−1

12,i + (1− b0,i)x
t−1
12,ix

t−1
11 ]

+(1− f/2)c1,i[(1− b3,i)x
t−1
22,ix

t−1
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t−1
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] (C.3)

Wix
t,v
11,i = (1− f)(1− c3,i)[(1− b3,i)x
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22,ix
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11,i

+(1− b1,i)x
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21,ix
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12,ix

t−1
11,i]

+(1− f/2)(1− c1,i)[(1− b3,i)x
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21,ix
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21,ix
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2
], (C.4)

where Wi = 1−f(xt−1
22,i+xt−1

12,i) = 1−fqt−1
i . Throughout, we consider the simple

case where b3,i = c3,i = 1 and b0,i = c0,i = 0 for all populations. Also, we assume

that, for population i, b1,i = b2,i = bi and thus any bias in vertical transmission of

trait E is specific to each population, i, while assuming that c1,i = c2,i = c = 0.5,

so vertical transmission of trait A is unbiased in all populations.

C.2 Horizontal Transmission

After horizontal transmission of trait A, the frequencies of the four cultural types

in population i at generation t + 1 are given by

xt
22,i = xt,v

22,i +
1

n

n∑
j=1

et
ijh(xt,v

12,j + xt,v
22,j)x

t,v
21,i[1 + ψ(2(xt,v

22,i + xt,v
12,i)− 1)] (C.5)

xt
21,i = xt,v

21,i −
1

n

n∑
j=1

et
ijh(xt,v

12,j + xt,v
22,j)x

t,v
21,i[1 + ψ(2(xt,v

22,i + xt,v
12,i)− 1)] (C.6)
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xt
12,i = xt,v

12,i +
1

n

n∑
j=1

et
ijh(xt,v

12,j + xt,v
22,j)x

t,v
11,i[1 + ψ(2(xt,v

22,i + xt,v
12,i)− 1)] (C.7)

xt
11,i = xt,v

11,i −
1

n

n∑
j=1

et
ijh(xt,v

12,j + xt,v
22,j)x

t,v
11,i[1 + ψ(2(xt,v

22,i + xt,v
12,i)− 1)], (C.8)

where

et
ij = µ0K

2 + µ1[
1

n

n∑
j=1

(xt,v
22,j + xt,v

21,j)]
2 + µ2(x

t,v
22,i + xt,v

21,i)(x
t,v
22,j + xt,v

21,j)

= µ0K
2 + µ1(p

t,v)2 + µ2p
t,v
i pt,v

j . (C.9)

C.3 Statistical Association between the Traits

The changes in the frequencies of traits E and A between generations t− 1 and

t in population i are given by (dropping the superscript t− 1 on the right-hand

side)

∆pi = pi(1− pi)(2bi − 1)− Di

Wi

f [bi − pi(2bi − 1)] , (C.10)

and

∆qi = (1− Γ)
qi(1− qi)

Wi

[2c(1− f/2)− 1] + Γ(1− qi), (C.11)

respectively, where Γ = 1
n

∑n
j=1(e

t
ijq

t,v
j )h[1 + ψ(2qt,v

i − 1)] and Di = x22,i − piqi

denotes the statistical association between the two traits in population i.

The change in the mean frequency of traits E and A in a population, between

generations t and t + 1, is given by

∆p =
1

n

n∑
i=1

∆pi, (C.12)

and

∆q =
1

n

n∑
i=1

∆qi, (C.13)

respectively.

If, at generation t = 0, there is no statistical association between traits E

and A in population i (i.e., Dt=0
i = 0), then there is no change in the statistical
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association over time (∆Di = 0) and Dt
i remains 0. This can be shown by noting

that when Dt
i = 0, the frequencies of the four cultural types are given by

xt
22,i = pt

iq
t
i ,

xt
21,i = pt

i(1− qt
i),

xt
12,i = qt

i(1− pt
i)

xt
11,i = (1− pt

i)(1− qt
i). (C.14)

Substituting the right hand sides of (C.14) into recursions (C.1) to (C.8) reveals

that Dt+1
i = 0 and thus ∆Di = 0. This makes intuitive sense as the model

assumes that vertical transmission of each trait is independent of the other, while

the horizontal transmission of trait A may be affected by the frequency of trait E

in the population, but is not affected by whether individuals demonstrating trait

A exhibit trait E or not. Also note that while Di = 0, a statistical association

between traits E and A over the metapopulation may result from the Wahlund

effect (Wahlund, 1928). This statistical association, or covariance, is defined as

Dmetapopulation = (
∑n

i pi − p)(
∑n

i qi − q) and is accounted for in the model (see

equations (5.1) to (5.6)) by keeping track of pi and qi for each population, i.

For simulations of the model, we make the simplifying assumption that at

generation t = 0, Dt=0
i = 0. Thus, there is never a statistical association between

the two traits and so, given (C.14), recursions (C.1) to (C.8) can be collapsed

to recursions for the frequency of traits E and A, over time, given by equations

(5.1) to (5.6). Numerical analysis confirmed that recursions in (C.1) to (C.8) and

recursions in (5.1) to (5.6) generate the same results when Dt=0
i = 0.

C.4 Local Stability of Equilibria

Here, we consider, for population i, the four ‘corner’ equilibrium states, denoted

by Qi(0, 0, 0), Qi(1, 0, 0), Qi(0, 1, 0) and Qi(1, 1, 0) (where Qi(p̂i, q̂i, Di) denotes

the equilibrium state). From (C.10) and (C.11), the equilibrium state Qi(0, 0, 0)

may exist if the mean frequency of trait A in the metapopulation, q = 1
n

∑n
j=1 qj =

0. If q > 0 and p = 0, the equilibrium state Qi(0, 0, 0) requires that K2µ0 = 0.

Furthermore, if q > 0 and, in addition, the mean frequency of trait E in the

metapopulation p > 0, the equilibrium state Qi(0, 0, 0) requires that µ1 = K2µ0 =

0.
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From (C.10) and (C.11), the equilibrium state Qi(1, 0, 0) may exist if q =

0. If q > 0, the equilibrium state Qi(1, 0, 0) requires that K2µ0 = µ1 = 0.

Furthermore, if q > 0 and, in addition, there is a population j, for which pj > 0

and qj > 0, the equilibrium state Qi(1, 0, 0) requires that µ2 = K2µ0 = µ1 = 0.

Finally, from (C.10) and (C.11), there are two corner equilibrium states given by

Qi(0, 1, 0) and Qi(1, 1, 0). When analyzing the local stability of each of the four

corner equilibria in population i, we assume that the conditions required for each

equilibrium to exist are satisfied and that all other populations, j 6= i, are at an

equilibrium state.

Qi(0, 0, 0) and Qi(1, 0, 0) are unstable and invaded by trait E and by trait e

if

bi > 1/2, (C.15)

and

bi < 1/2, (C.16)

respectively.

If inequalities (C.15) or (C.16) are violated, the respective equilibrium states,

Qi(0, 0, 0) and Qi(1, 0, 0), are unstable and invaded by trait A when

2c(1− f/2) > 1/[1 + (K2µ0 + p̂
2
µ1 + p̂2

i µ2)h(1− ψ)]. (C.17)

Meanwhile, the equilibrium states Qi(0, 1, 0) and Qi(1, 1, 0) are unstable and

invaded by trait E and by trait e, respectively, if the respective inequalities,

(C.15) and (C.16), are satisfied. If inequalities (C.15) and (C.16) are violated, the

respective equilibrium states, Qi(0, 1, 0) and Qi(1, 1, 0), are unstable and invaded

by trait a when

2(1− c)
(1− f/2)

1− f
> 1/[1− 1

n

n∑
j=1

(K2µ0 + p̂2
jµ1 + p̂ip̂jµ2)q̂jh(1 + ψ)]. (C.18)

Inequality (C.17) can be rearranged to derive the line

f =
2h[µ1p̂

2
+ µ2p̂

2
i ](1− ψ)

1 + h[µ1p̂
2
+ µ2p̂2

i ](1− ψ)
, (C.19)

under which trait A may invade from either equilibrium states Qi(0, 0, 0) or

Qi(1, 0, 0), where µ0 = 0 and c = 1/2.
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