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Abstract

Imitation is a highly complex cognitive process, employing
vision, perception, representation, memory and motor con-
trol. The underlying mechanisms that give rise to imitative
behavior have attracted a lot of attention in recent years and
have been the subject of research in various disciplines, from
neuroscience to animal behavior and human psychology. In
particular, studies in monkeys and humans have discovered a
neural mirror system that demonstrates an internal correlation
between the representations of perceptual and motor func-
tionalities. In contradistinction to previous engineering-based
approaches, we focus on the evolutionary origins of imitation
and present a novel framework for studying theemergence
of imitative behavior. We successfully develop evolutionary
adaptive autonomous agents that spontaneously demonstrate
imitative learning, facilitating a comprehensive study of the
emerging underlying neural mechanisms. Interestingly, some
of these agents are found to embody a neural “mirror” device
analogous to those identified in biological systems. Further
analysis of these agents’ networks reveals complex dynamics,
combining innate perceptual-motor coupling with acquired
context-action associations, to accomplish the required task.

Introduction
Imitation is an effective and robust way to learn new traits
by utilizing the knowledge already possessed by others. The
past twenty years have seen a renewed interest in imitation in
various fields of research such as developmental psychology,
experimental studies of adult social cognition, and most im-
portant, neurophysiology and neuropsychology (Prinz and
Meltzoff, 2002). Research in this last field had led to the ex-
citing discovery ofmirror neurons. These neurons, found in
the ventral premotor cortex (area F5) in monkeys, discharge
both when the monkey performs an action and when it ob-
serves another individual making a similar action (Gallese
et al., 1996; Rizzolatti et al., 2001). An analogous mech-
anism, whereby cortical motor regions are activated during
movement observations was also demonstrated in humans
using TMS, MEG, EEG and fMRI (e.g. Iacoboni et al.,
1999). Imitation of motor skills requires the capacity to
match between the visual perception of a demonstrator’s ac-
tion and the execution of a motor command. The neural mir-
ror system, demonstrating an internal correlation between

the representations of perceptual and motor functionalities,
may form one of the underlying mechanisms of imitative
ability.

Learning by imitation has already been applied by re-
searchers in the fields of artificial intelligence and robotics
in various experiments. Hayes and Demiris (1994) presented
a model of imitative learning to develop a robot controller.
Billard and Dautenhahn (1999) studied the benefits of social
interactions and imitative behavior for grounding and use
of communication in autonomous robotic agents. Boren-
stein and Ruppin (2003) employed learning by imitation
to enhance the evolutionary process of autonomous agents.
For an up-to-date introduction to work on imitation in both
animals and artifacts see the cross-disciplinary collection
(Dautenhahn and Nehaniv, 2002b). Furthermore, some re-
searchers, motivated by the recent discovery of a neural mir-
ror system, have implemented various models for imitative
learning, embodying neurophysiologically inspired mecha-
nisms. Billard (2000) presented a model of a biologically in-
spired connectionist architecture for learning motor skills by
imitation. The architecture was validated through a mechan-
ical simulation of two humanoid avatars, learning several
types of movements sequences. Oztop and Arbib (2002),
focusing on the grasp-related mirror system, argued that mir-
ror neurons first evolved to provide visual feedback on one’s
own “handstate” and were later generalized to understand-
ing the actions of others. They have conducted a range of
simulation experiments, based on a schema design imple-
mentation of that system, providing both a high-level view
of the mirror system and interesting predictions for future
neurophysiological testing. Other researchers (Marom et al.,
2002) claimed that the mirror system structure can be ac-
quired during life through interaction with the physical or
social environment and demonstrated models whereby per-
ceptual and motor associations are built up from experience
during a learning phase.

The studies cited above, however, assume that the agents’
basic ability and incentive to imitate are innate, explicitly in-
troducing the underlying functionality, structure or dynam-
ics of the imitation mechanism into the experimental system.



In contrast to this engineering-based approach, we wish
to study the neuronal mechanisms and processes under-
lying imitation from an evolutionary standpoint, and to
demonstrate how imitative learning per se can sponta-
neouslyemergeand prevail. Clearly, acknowledging the
evolutionary origins of imitation and examining the emerg-
ing (rather than engineered) imitative learning device can
shed new light on the common fundamental principles that
give rise to imitative behavior.

In this study, we thus set out to pursue two objec-
tives: Acknowledging the significance of embodied imita-
tion, we first present a novel experimental framework
for evolving context-based imitative learning in evolu-
tionary adaptive autonomous agents(Ruppin, 2002; Flo-
reano and Urzelai, 2000). We demonstrate the emergence
of imitating agents that embody a simple, yet biologically
plausible mechanism of imitative behavior.We then turn
to systematically analyze the structure and dynamics of
the resulting neurocontrollers. This analysis surprisingly
reveals neural devices analogous to those found in biologi-
cal systems, including clear examples of internal coupling
between observed and executed actions. Further analysis
of the network adaptation dynamics demonstrates the innate
nature of these internal links with direct bearing on one of
the key questions in imitation theory, concerning the on-
togeny of mirror neurons (Prinz and Meltzoff, 2002; Hur-
ford, 2003). We conclude with a discussion of the implica-
tions of our findings for imitation theory and a description
of future work.

Context-Based Imitation
Learning by imitation, like any cognitive process, must be
considered an intrinsically embodied process, wherein the
interaction between the neural system, the body and the en-
vironment cannot be ignored (Keijzer, 2002; Dautenhahn
and Nehaniv, 2002a). In particular, every action, either ob-
served or performed, occurs within a certaincontext. A con-
text can represent the time or place in which the action is
made, various properties of the environment, or the state of
the individual performing the action. Clearly, there is no
sense in learning a novel behavior by imitating another’s ac-
tions if you do not know the context in which these actions
are made – a certain action can be extremely beneficial in
one context, but have no effect (or even be deleterious) in a
different context. We hence use the termcontext-based im-
itation in the sense of being able to reproduce another’s ob-
served action whenever the context in which the action was
originally observed, recurs.1 For example, an infant observ-

1Animal behavior and human psychology literature introduces
a wide range of definitions of imitation, focusing on what can con-
stitute true imitation vs. other forms of social learning (Billard and
Dautenhahn, 1999; Zentall, 2001). Our definition addresses the
importance of the observed action’scontextfor a successfulfuture
behavior.

ing his parents may learn by imitation to pick up the phone
(action) whenever the phone is ringing (context).

Context-based imitation can thus be conceived as con-
structing a set of associations (or a mapping) from contexts
to actions, based on observations of a demonstrator perform-
ing different actions within various contexts. These associ-
ations should comply with those that govern the demonstra-
tor’s behavior, and should be learned (memorized) so that
each context stimulates the production of the proper mo-
tor action even when the demonstrator is no longer visible.
Such a learning scheme can be seen as an imitation-based
analogue of a partially observable hidden Markov model of
classical operant learning. It should be noted however, that
“action” is an abstract notion, and in reality, an imitating
individual (agent) should also be capable of matching avi-
sual perceptionof the demonstrator’s action with the cor-
respondingmotor commandthat activates this action. The
key objective of this study is to gain a comprehensive under-
standing of the mechanisms that govern such context-based
imitative learning and in particular to examine the nature
of the associations between visual perception, motor con-
trol and contexts that are being formed in the process. To
address these questions, we employ an experimental setup
that embodies context-based imitation within an evolution-
ary framework.

The Experimental Setup
The Environment
The agents in our simulation inhabit a world that can be in
one of severalworld states{s1,s2, . . . ,sn}. In each time step,
the world state is randomly selected from{s1,s2, . . . ,sn}
with a uniform distribution. These states can represent for
example the presence of certain food items or the size of
an observed object and hence form thecontext in which
actions are observed and performed. An additional set,
{a1,a2, . . . ,am}, represents the repertoire of motoractions
that can be performed by the agent or by the demonstrator.
Within the simulations described below, bothn andm are
set to4. A state-action mappingis also defined, assigning
a certain action as the proper action for each world statesi .
Regularly performing the proper action assigned to the cur-
rent state of the world is deemed a successful behavior and
confers a positive fitness. It is assumed that the environment
is also inhabited by a demonstrator (teacher), successfully
performing the proper action in each time step. However,
the world state and demonstrator are not visible in every
time step and can be seen with probabilities 0.6 and 0.2 re-
spectively.Furthermore, the above mapping, from world
states to actions, is randomly selected anew in the begin-
ning of each agent’s run in the world. The motivation for
this state-action mapping shuffle is twofold. First, it prevents
such a mapping from becoming genetically determined. To
demonstrate a successful behavior, agents mustlearn the
proper mapping by observing the demonstrator, promot-



Figure 1: The agent’s sensorimotor system and neurocon-
troller. The sensory input is binary and includes the cur-
rent world state and a retinal “image” of the demonstrator’s
action (when visible). The retinal image for each possible
demonstrator’s action and a retinal input example for action
a4 are illustrated. The motor output determines which ac-
tions are executed by the agent. The network synapses are
adaptive and their connection strength may change during
life according to the specified learning rules.

ing an imitation based mechanism to emerge. Second, it
represents a scenario of a changing environment, wherein
novel world states appear over time (new food sources, other
species, etc.), making prior state-action mappings obsolete.

The Agent

Figure 1 illustrates the structure of the agent’s sensorimo-
tor system and neurocontroller. The agent’s sensory input
in each time step includes the current world state (if visi-
ble) and a 4-cell retinal “image” of the demonstrator’s ac-
tion (if visible). The retinal image is determined according
to a predefined mapping from actions to retinal binary pat-
terns which remains fixed throughout the simulation. Each
of the agent’s output neurons represents a motor command,
determining which actions (if any) will be executed by the
agent.

Each agent embodies a simple feed-forward neural net-
work as a neurocontroller. These networks however are
adaptive, whereby the genotype of each individual encodes
not only the initial synaptic weights but also aHebbian
learning ruleandlearning ratefor each synapse. In partic-
ular, each synapse in the network,(i, j), connecting neuron
j to neuroni, is encoded by 4 genes, defining the follow-
ing properties: (i)w0

i j - the initial connection strength of the
synapse (real value in the range [0,1]); (ii)si j - the connec-
tion sign (1 or -1); (iii)ηi j - the learning rate (real value in
the range [0,1]); and (iv)∆wi j - the learning rule applied to
this synapse.∆wi j encodes 1 of 5 learning (modification)
rules: no learning, plain Hebb rule, postsynaptic rule, presy-
naptic rule and covariance rule. Each synaptic weightwi j is
initialized with w0

i j at the beginning of the agent’s life and
is updated after every time step (a sensory-motor cycle) ac-

cording towt
i j = wt−1

i j + ηi j ∆wi j . For a detailed description
of the adaptation dynamics see Floreano and Urzelai (2000).
The network topology is static throughout the process and
for the purpose of our simulation was set to 8-7-4 (i.e., 8
input neurons, a hidden layer with 7 neurons, and 4 out-
put neurons), with an additional threshold unit in each layer.
Suchevolutionary adaptive autonomous agents, inspired by
those presented in Todd and Miller (1991) and Floreano and
Urzelai (2000), demonstrate a learning process that is super-
vised only indirectly, through natural selection.

The Evolutionary Process
A haploid population of the agents described above evolve to
successfully behave in the environment. Each agent lives in
the world for500time steps. Fitness is evaluated according
the the agent’s success in performing the proper action as-
signed to the current world state (i.e. activating only the ap-
propriate motor neuron), according to the state-action map-
ping, in each time step. An agent should perform an action
only if the world state is visible and regardless of the demon-
strator’s visibility. We use the Mean-Square Error (MSE)
measure to calculate the distance between the agent’s motor
output and the desired output, averaged over the agent’s life.
The agent performance during the first 100 time steps is not
evaluated (infancy phase). Fitness value is then calculated
as(1−Error) and averaged over 20 trial runs in the world.

The initial population is composed of 200 individuals,
each assigned a randomly selected genome (encoding the
initial connection weights, learning rules and learning rates).
Each new generation is created by randomly selecting the
best agents from the previous generation according to their
fitness, and allowing them to reproduce. During reproduc-
tion, 2% of the genes are mutated. The genomes of the top
20% of individuals are copied to the next generation without
mutation.

Results
Figure 2 portrays the fitness of the evolving agents across
evolution. As evident, the evolved agents successfully mas-
ter the behavioral task, regularly executing the proper action
is each world state. Obviously, given the way the task is de-
signed, this would not have been possible in the absence of
an emerged imitation-based learning strategy.
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Figure 2: The fitness of the best agent in the population and
the population average fitness as a function of generation.
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Figure 3: The activation level of one motor neuron (m2) dur-
ing the first 150 time steps. The different shapes indicate
whether the world state wass4 and whether it was visible.
The triangles at the bottom further represent time steps in
which the demonstrator was visible.

Having successfully evolved imitating agents, we turned
to examine the structure, dynamics and neural mechanisms
that these agents embody. In the rest of this section, we
analyze one such successful agent – the best agent in the
last generation of a specific evolutionary simulation run.
Other successful agents, from various simulation runs, were
analyzed and demonstrated similar phenomena (not shown
here). Direct evidence of the agent’s successful imitative be-
havior and the resulting learning dynamics are demonstrated
in Figure 3, depicting the activity of one of the motor neu-
rons (m2) in different states of the world. In this specific
simulation run, the state-action mapping was arbitrarily set
so thata2 is the proper action in world states4 and not in
any other state. In the beginning of its life, the agent acti-
vates motorm2, and therefore performs actiona2, whenever
the world state is visible. However, after only a few demon-
strations of the appropriate behavior, the proper state-action
mapping is learned and this motor is activated only when the
world state iss4, as expected.

Furthermore, examining the network hidden layer reveals
an interesting phenomenon with regard to the internal rep-
resentation of actions. As stated above, to support imitative
learning, wherein associations from contexts to motor com-
mands should be inferred from observations of the demon-
strator’s actions, an agent should be capable of matching the
visual perception of an observed action to the motor com-
mand that generates the corresponding action. Figure 4, de-
picting the activation level of 3 hidden neurons, attests to
the emergence of such inherent perceptual-motor coupling.
Apparently, various neurons in the hidden layer are active
both when the agent performs a certain action and when it
observes the demonstrator making a similar action,forming
internal mirror neurons analogous to those found in bio-
logical systems.2 Such mirror neurons were found in most

2As seen in Figure 4, the activation level of mirror neurons dur-
ing action observation is typically lower than the activation level
during action execution. An analogous phenomenon can also be
detected in neuronal recording data in the literature, and should
be further investigated. However, in our simulation, the relatively
small number of hidden neurons may account for this phenomenon,
forcing mirror neurons to participate also in motor excitation.

of the agents that evolved in our simulation environment.
However, typically, not all actions in the repertoire were as-
sociated with a corresponding mirror neuron, and there have
been cases where successful agents did not seem to incor-
porate any identifiable mirror neurons. An additional set of
intervention experiments, wherein hidden neurons are ex-
ternally activated (stimulated) or inactivated (lesioned), was
performed (not detailed here). These experiments demon-
strated that even actions that could not be associated with a
fully localized representation (i.e. a mirror neuron) may still
be represented in the hidden layer through a distributed neu-
ronal configuration. These findings are further discussed in
the following section.

We finally turn to examine the ontogenic, developmental
aspects of the resulting neurocontroller. Our main objective
is to identify which components in the neural mechanism
are innate and which are acquired during the agent’s life.
We first determine which synapses play a significant role
in the learningprocess. Clearly, variation in the synapse
strength during life or the genetically coded learning rate
are not appropriate indicators as they cannot differentiate
between learning processes that genuinely adapt the agent
to the world and unrelated self-organization processes. We
thus measure the variance in the connection strengthat the
end of the agent’s life across 1000 simulation runs. A low
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Figure 4: The activation level of 3 hidden neurons (h4, h5

andh6) during time steps 100-200 with an indication of the
executed or observed action. Circles, squares, diamonds and
triangles represent actionsa1, a2, a3, a4 respectively. A
filled shape indicates that the action was executed by the
agent (stimulated by a visible world state), while an empty
shape indicates that the action was only observed but not
executed. Time steps where actions are both observed and
executed are not drawn.
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Figure 5: An illustration of the connection strength variance
(a) and the overall contribution (b) of the synapses connect-
ing the input layer to the hidden layer.

variance value indicates that the synapse dynamics are in-
dependent of the world characteristics (e.g. the state-action
mapping), and thus cannot contribute to the learning pro-
cess that adapt the agent to the world. As demonstrated
in Figure 5a, this measure highlights the acquired nature of
the synapses connecting the world state neurons (input neu-
rons 1-4), with the mirror neurons we have identified (hid-
den neurons 4-6).Clearly, the acquired state-action as-
sociations are induced by these synapses. The markedly
lower variance values in other synapses from this layer and
in synapses connecting hidden layer neurons to motor neu-
rons (not illustrated here), suggest that these synapses do not
play an important part in the learning process. To measure
the overall importance of each synapse to the agent’s behav-
ior, we have utilized the Multi-perturbation Shapley value
Analysis (MSA), a rigorous way to determine the contri-
butions of system elements (Keinan et al., 2004). The re-
sulting contribution of each synapse connecting the input
layer to the hidden layer is illustrated in Figure 5b. Evi-
dently, the synapses that have been identified above as par-
ticipating in the learning process, possess a non-negligible
contribution value. However, the most important synapses
are among those connecting the retinal neurons (input neu-
rons 5-8), representing the observed action, with the mirror
neurons (hidden neurons 4-6).These connections manifest
the strong innate associations between the visual percep-
tion of observed actions and the internal representation
of these actions, developed during the evolutionary pro-
cess.

Figure 6: A simple model of context-based imitation. Solid
arrows represents innate associations, while dashed arrows
represents associations that are acquired during the agent’s
life via Hebbian learning.

Based on the findings described above, a simple model of
the mechanism that evolved in our settings to support imi-
tative behavior can be inferred (Figure 6). Notably, the re-
quired perceptual-motor coupling was not explicitly engi-
neered into the agents, but rather emerged through evolu-
tion as aninnateproperty. Furthermore, to support an effec-
tive mechanism of imitation, visually perceived actions are
linked to the corresponding motor commands via fully local-
ized internal elements, representing each action, in the form
of mirror neurons. The acquired context-action stimuli can
then be constructed through a simple mechanism of Hebbian
learning without external supervision or reinforcement sig-
nals. This model can account for simple, low-level forms of
imitation that exhibit a clear example of innate perceptual-
motor link such as infant facial imitation (Meltzoff, 1996).

Discussion
This study presents an experimental framework for studying
the emergence and dynamics of imitation in evolutionary au-
tonomous agents. This framework provides a fully accessi-
ble, yet biologically plausible, distilled model for imitation
and can serve as a vehicle to study the mechanisms that un-
derlie imitation in biological systems. Our confidence in this
framework is motivated by two observations: First, being
an evolutionary emerging mechanism, rather than an engi-
neered one, we believe it is likely to share the same funda-
mental principles driving natural systems. Second, our anal-
ysis of the resulting mechanism reveals phenomena analo-
gous to those found biological neural mechanisms.

The model presented in this paper addresses the very
essence of questions concerning the mechanism underlying
imitative behavior. It successfully demonstrates how the re-
quired associations between perceived actions, motor com-
mands and contexts can be constructed within a hybrid adap-
tation process, combining evolution and lifetime learning.
In particular, addressing the ontogeny of mirror neurons, an
issue which is currently in the center of imitation theory re-
search, our model offers a simple schema for the origins and
dynamics of the neural mirror system.

The mirror neurons that emerged in our simulation also
provide interesting insights to the ongoing debate about the
role of representation in embedded systems. Our model,
promoting the use of observed actions of“others” for learn-
ing proper motor actions of“self” , suggests a hypothesis for
the origins of internal representation. However, the emer-
gence of fully localized internal representations was not
absolute and various distributed representations were also
demonstrated, supporting Cliff and Noble’s (1997) call for
an operational definition of representation. The evolution of
such distributed representations also confirms that the emer-
gence of mirror neurons within our experimental setup is not
trivial and we thus wish to use this model to further deter-
mine the physical and social environmental conditions that
promote the emergence of localized mirror neurons.



The framework presented in this paper can be further en-
hanced to simulate a more realistic scenario of social learn-
ing. In particular, we wish to examine how an extension of
the agent’s sensory input, and a complex social environment
inhabited by demonstrators with varying levels of success,
affect the resulting imitation strategy. Questions concerning
the dependencies between observed and executed actions
and the formation of mirror neurons are especially of great
interest: How will the representation of actions that cannot
be executed by the observer (e.g. due to different embodi-
ment) differ from those of imitated actions? How will a hier-
archical repertoire of actions affect the emerging representa-
tion? Can emerging mirror neurons help predict the actions
of others (Ramnani and Miall, 2004)? We hope that further
extensions of this basic model will allow us to obtain testable
predictions regarding imitative behavior in humans and pri-
mates, and shed new light on some of the key issues con-
cerning perception, internal representation and cognition.
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