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Abstract

Heat-shock protein 90 (Hsp90) promotes the maturation and stability of its client proteins, including many kinases. In
doing so, Hsp90 may allow its clients to accumulate mutations as previously proposed by the capacitor hypothesis. If true,
Hsp90 clients should show increased evolutionary rate compared with nonclients; however, other factors, such as gene
expression and protein connectivity, may confound or obscure the chaperone’s putative contribution. Here, we compared
the evolutionary rates of many Hsp90 clients and nonclients in the human protein kinase superfamily. We show that
Hsp90 client status promotes evolutionary rate independently of, but in a small magnitude similar to that of gene
expression and protein connectivity. Hsp90’s effect on kinase evolutionary rate was detected across mammals, specifically
relaxing purifying selection. Hsp90 clients also showed increased nucleotide diversity and harbored more damaging
variation than nonclient kinases across humans. These results are consistent with the central argument of the capacitor
hypothesis that interaction with the chaperone allows its clients to harbor genetic variation. Hsp90 client status is
thought to be highly dynamic with as few as one amino acid change rendering a protein dependent on the chaperone.
Contrary to this expectation, we found that across protein kinase phylogeny Hsp90 client status tends to be gained,
maintained, and shared among closely related kinases. We also infer that the ancestral protein kinase was not an Hsp90
client. Taken together, our results suggest that Hsp90 played an important role in shaping the kinase superfamily.
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Introduction
The conserved heat-shock protein 90 (Hsp90) facilitates the
proper folding and stability of its substrates (clients) (Taipale
et al. 2010), many of which are kinases with important roles in
growth and development. Hsp90 perturbation increases the
penetrance of expressed genetic variants and reveals cryptic
genetic variation in genetically divergent populations of plant,
fly, yeast, and fish (Rutherford and Lindquist 1998; Queitsch
et al. 2002; Yeyati et al. 2007; Jarosz and Lindquist 2010). In
worms, naturally varying Hsp90 levels predict mutation pen-
etrance with lower Hsp90 levels resulting in greater pene-
trance (Burga et al. 2011; Casanueva et al. 2012). These
observations with traditional model organisms prompted
the controversial hypothesis that Hsp90 plays an important
evolutionary role, allowing genetic variation to remain phe-
notypically silent and releasing it in environments that per-
turb Hsp90 function (Rutherford and Lindquist 1998).
Consistent with this hypothesis, perturbing Hsp90 function
in surface-dwelling Astyanax mexicanus fish results in eye
phenotypes that are reminiscent of the natural adaptation
of eye loss in the cave-dwelling fish of the same species, pre-
sumably due to release of Hsp90-dependent standing varia-
tion (Rohner et al. 2013). Hsp90-dependent standing
variation occurs frequently in natural strains of plants, flies,
and yeast and often affects complex traits (Rutherford and
Lindquist 1998; Sangster, Salathia, Lee, et al. 2008; Jarosz and

Lindquist 2010), consistent with a significant role of Hsp90 in
evolution, especially in the evolution of genes encoding its
client proteins.

The evolutionary rate of protein-coding genes is com-
monly measured as the ratio of nonsynonymous changes to
synonymous changes, dN/dS. Using this measure, we recently
reported that genes encoding Hsp90 clients tend to evolve
faster than genes encoding their nonclient paralogs
(Lachowiec et al. 2013). This trend was not observed without
considering paralog status, presumably because many other
factors, some of which are shared among paralogs, influence
evolutionary rate. One drawback of this study was the small
number of available client and nonclient paralog pairs.
Recently, Taipale et al. (2012) systematically annotated
Hsp90 clients in the human kinome, using a high-throughput
assay to assess kinase and Hsp90 interactions. Of the 314
tested kinases, 98 are classified as strong Hsp90 clients and
95 as weak clients. Notably, the dN of strong Hsp90 clients is
greater than the dN of nonclients, suggesting that interaction
with Hsp90 may indeed allow for increased accumulation of
nonsynonymous genetic variation (Taipale et al. 2012).

There is precedent for chaperone-facilitated evolution of
client proteins. In prokaryotes, GroEL/ES clients show differ-
ent degrees of dependency on the chaperone for stability and
folding. Genes that encode proteins with greater GroEL/ES
dependency show greater dN/dS after correction for
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confounding factors, (Fares et al. 2002; Bogumil and Dagan
2010, 2012; Williams and Fares 2010; Bogumil et al. 2012).
Similarly, overexpression of GroEL/ES promotes tolerance of
nonsynonymous mutations (Tokuriki and Tawfik 2009).
Factors that may confound putative chaperone effects on
evolutionary rate include absolute expression levels (P�al
et al. 2001; Wall et al. 2005) and a protein’s connectivity in
protein–protein interaction (PPI) networks (Fraser et al.
2002). Highly expressed genes tend to evolve slower than
genes with lower expression levels as do genes encoding pro-
teins that interact with many other proteins, presumably due
to the selective pressure to maintain all functional interac-
tions. Neither of the studies discussed above (Taipale et al.
2012; Lachowiec et al. 2013) controlled for these factors when
examining the role of Hsp90 on protein evolution. Another
factor contributing to dN/dS is protein stability; genes encod-
ing stable proteins tend to evolve faster (Bloom et al. 2006).
Many Hsp90 clients are inherently unstable and are rapidly
degraded in Hsp90-limited conditions (Taipale et al. 2010).
Interaction with the chaperone Hsp90 promotes client pro-
tein stability (Taipale et al. 2012), suggesting a mechanistic
basis for the chaperone’s putative effect on dN/dS.

Here, we set out to dissect and compare the contributions
of Hsp90 client status, gene expression levels and protein
interaction degrees to the evolutionary rate of kinases. We
evaluate the role of Hsp90 in kinome evolution within and
across lineages. Hsp90 client status is thought to be dynamic
throughout gene family evolution with as few as one amino
acid change resulting in a switch from nonclient to client
(Citri et al. 2006; Taipale et al. 2012; Lachowiec et al. 2013).
We assess this unexplored dynamic by quantifying the tran-
sition rates between client and nonclient states throughout
kinase evolution and show that client status switching is in-
frequent. We also infer the ancestral state of client status
among kinases. Taken together, our results support the con-
troversial hypothesis that Hsp90 plays an important role in
the evolutionary processes shaping large gene families.

Results

Hsp90 Client Status Contributes to dN/dS

Taipale et al. (2012) previously reported that strong Hsp90
kinase clients acquire more nonsynonymous mutations than
nonclient kinases, using pairwise dN values from human and
mouse. We first extended these analyses by examining evo-
lutionary rate (pairwise dN/dS between human and mouse,
table 1) for non, weak, and strong clients based on strength of
kinase interaction with Hsp90 as defined previously (Taipale
et al. 2012). Evolutionary rate analysis (dN/dS) is the gold
standard for assessing the types of selection potentially
acting on proteins. The dN/dS for strong Hsp90 clients was
significantly greater than the dN/dS for nonclients (fig. 1a,
P = 0.0004, Wilcoxon rank-sum test); no significant dN/dS
difference was observed between weak clients and nonclients.
Both of these findings were consistent with the prior findings
observed with dN alone. Second, we found that dN/dS values
of nonclients are significantly different from the combined
dN/dS values of strong and weak clients (P = 0.01221,

Wilcoxon rank-sum test), which was not previously addressed
(Taipale et al. 2012). None of the kinases showed dN/dS41,
which would indicate positive selection. Rather, the Hsp90
client kinases showed relaxed purifying selection compared
with nonclients, consistent with previous observations in
plants and yeast (Lachowiec et al 2013).

The observed greater dN/dS of Hsp90 clients may be an
indirect consequence of other factors that strongly influence
evolutionary rate, specifically gene expression levels (P�al et al.
2001; Wall et al. 2005) or protein interaction degree (Fraser
et al. 2002). If genes encoding Hsp90 clients are expressed at
lower levels (Taipale et al. 2012) or if client proteins are less
connected in protein interaction networks, the correlation
between Hsp90 client status and dN/dS can be explained
without invoking Hsp90 as a contributor to evolutionary
rate. We examined whether gene expression level or PPI con-
nectivity explains the observed contribution of Hsp90 client
status to kinase dN/dS by conducting a linear regression anal-
ysis. To this end, we calculated the mean and maximum gene
expression of client and nonclient kinases across RNA-seq
experiments for 11 different human primary tissue samples
(Castle et al. 2010) and used PPI values from Taipale et al.
(2012). To account for the phylogenetic relatedness among
these kinases, we used the kinase tree (Manning et al. 2002) to
calculate phylogenetically independent contrasts (PIC)
(Felsenstein 1985) to correct for nonindependence of all var-
iables under study: Kinase dN/dS, Hsp90 client status, gene
expression levels, and PPI values. For this analysis, Hsp90 client
status for each kinase was measured by its quantitative inter-
action score with the chaperone (Hsp90 interaction score
[HIS]) (Taipale et al. 2012). We considered whether expression
breadth, measured as the number of tissues in which a kinase
is expressed, was correlated with dN/dS. In this data set, how-
ever, 187 of the tested 210 kinases were expressed in all tis-
sues, precluding analysis.

We used linear regression to understand the relationships
among the PIC for each pair of variables. The PIC of kinase
evolutionary rates and HIS were positively associated
(P = 0.0001, table 2), consistent with our phylogenetically
na€ıve, categorical analysis (fig. 1a). As expected the PIC of
kinase evolutionary rate and gene expression levels were neg-
atively associated (P = 0.02, table 2) (P�al et al. 2001); the PIC of
kinase evolutionary rate and PPI connectivity were also neg-
atively associated (Fraser et al. 2002) (P = 0.0001, table 2).
Notably, we did not observe a significant association between
HIS and expression contrasts (P = 0.7, table 2), suggesting that
there are no systematic differences in gene expression levels
that may drive the observed differences in evolutionary rate
between Hsp90 client and nonclient kinases. However, we
found a negative correlation between PPI connectivity and
HIS contrasts (table 2), raising the possibility that the greater
evolutionary rate of Hsp90 kinase clients derives from fewer
protein interactions.

To further disentangle the contributions of HIS, gene ex-
pression levels, and PPI connectivity to kinase evolutionary
rate, we also calculated partial correlations among the con-
trasts for the four variables. We found that HIS was positively
correlated with kinase evolutionary rate when controlling for
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both gene expression levels and PPI connectivity (r = 0.19,
P = 0.003, Pearson correlation, table 3). The relative contribu-
tion of HIS and gene expression levels to kinase evolutionary
rate was comparable when controlling for the respective
other variables; the relative contribution of PPI connectivity
was marginal (table 3). To quantify the combined explanatory
power of HIS, gene expression levels, and PPI connectivity to
kinase dN/dS, we modeled dN/dS PIC on the PIC of all three
variables. This model explained only a small component of
the dN/dS PIC (R2 = 0.11).

In summary, we found that 1) Hsp90 client status is pos-
itively associated with kinase dN/dS, 2) this association ap-
pears to be independent of gene expression levels or PPI

connectivity, and 3) the strength of association is comparable
for Hsp90 client status and gene expression levels. Notably,
none of the tested factors alone or in combination explained
a large proportion of the observed variation in kinase evolu-
tionary rate.

Hsp90-Associated Effects on Kinase Evolutionary Rate
Are Observed across Mammals

Thus far, we have analyzed kinase dN/dS values that were
calculated from human and mouse, species which diverged
approximately 75 Ma (Chinwalla 2002). As mice are known to

FIG. 1. Hsp90 client and nonclient kinases differ significantly in evolutionary rate. (a) The difference for human–mouse pairwise dN/dS for client and
nonclient kinases is driven by strong clients (P = 0.0004211, Wilcoxon rank-sum test). (b) Significant differences between strong and nonclient kinase
dN/dS were observed across mammals in a core set of kinases found in all mammalian species examined (Wilcoxon rank-sum test). Shades of red
indicate false discovery rate (FDR).

Table 1. dN, dS, and dN/dS Values for Human Kinases.

dN 95% CI for dN dS 95% CI for dS dN/dS 95% CI for dN/dS

Nonclients 0.043 (0.0018, 0.1497) 0.605 (0.2704, 1.0417) 0.069 (0.0043, 0.2239)

All clients 0.055 (0.0025, 0.1811) 0.619 (0.3106, 1.2571) 0.088 (0.0053, 0.3148)

Weak clients 0.047 (0.0011, 0.1780) 0.629 (0.2823, 1.2331) 0.073 (0.0036, 0.2475)

Strong clients 0.063 (0.0050, 0.1813) 0.609 (0.3486, 1.1787) 0.104 (0.0091, 0.3176)

Table 3. Hsp90 Is Correlated with dN/dS When Controlling for PPI
and Expressiona.

PIC HIS PIC dN/dS PIC PPIb

PIC HIS

PIC dN/dS 0.197**

PIC PPI �0.105 �0.0958

PIC max exprc
�0.139* �0.212** 0.027063

aPartial correlation are shown between two variables, controlling for the other two,
Pearson correlation.
bPPI, number of PPIs.
cmax expr, maximum expression across 11 tissues.

P values: *0.05, **0.01.

Table 2. HIS Is Positively Associated with dN/dSa.

Model Regression
Coefficient

R2

dN/dS � HIS 0.007462*** 0.06447

HIS � expression maximumb
�0.003507 0.00052

dN/dS � expression maximum �0.0006343* 0.02056

HIS � PPI �0.35586**** 0.08779

dN/dS � PPI �0.008626*** 0.06256

aPhylogenetic independent contrasts were used for all regression analyses.
bMaximum expression of each kinase was determined across 11 tissues.

P values: *0.05, **0.01, ***0.001, ****0.0001
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be a long-branching clade (Wu and Li 1985; Rat-Genome-
Sequencing-Project-Consortium 2004), we evaluated whether
Hsp90’s effect on kinase dN/dS values was lineage- or time-
dependent. To do so, we determined the core set of kinases
conserved across all tested mammals and obtained pairwise
dN/dS values for the one-to-one orthologs of strong human
Hsp90 kinase clients and nonclients. In total, 70 kinases were
conserved, comprised of 28 nonclients, 20 weak clients, and
22 strong clients. Consistent with the mouse-human compar-
isons, strong Hsp90 clients evolved faster than nonclients
across these species, including several monophyletic lineages
such as Primates, Glires, and Laurasitheria (fig. 1b).

Across all comparisons, the average ratio of strong
client dN/dS to nonclient dN/dS was 1.63� 0.25 (standard
deviation), indicating that Hsp90 clients undergo relaxed
selection compared with nonclients (supplementary fig.
S1a, Supplementary Material online). Our results suggest
that Hsp90 client kinases tend to accumulate nonsynony-
mous variation compared with nonclient kinases regardless
of species compared and time of divergence.

Several previous studies have demonstrated that Hsp90-
dependent standing variation is common in yeast, plant, fly,
and fish populations (Rutherford and Lindquist 1998;
Queitsch et al. 2002; Yeyati et al. 2007; Sangster, Salathia,
Lee, et al. 2008; Jarosz and Lindquist 2010). Using genetic or
pharmaceutical perturbation of Hsp90, these studies found
significantly increased trait heritability upon Hsp90 inhibition,
presumably due to the many identified Hsp90-responsive loci.
For the vast majority of these Hsp90-dependent loci, the
identity of the underlying polymorphism (i.e., the gene or
regulatory region affected) remains unknown and hence evo-
lutionary rate analysis of these loci has yet to be conducted.
However, a detailed genetic study found that an Hsp90 client
showed increased accumulation of nonsynonymous variation
compared with its nonclient paralog within Arabidopsis thali-
ana across divergent strains (Lachowiec et al, 2013).

We therefore hypothesized that Hsp90’s effect on kinase
evolutionary rate should be detectable among humans. To
test this hypothesis, we took advantage of the thousands of
sequenced human genomes and examined nucleotide diver-
sity of kinase clients and nonclients as a measure of accumu-
lated genetic variation. Specifically, we assessed nucleotide
diversity for kinase clients and nonclients in approximately
6,500 individuals (Exome Variant Server), accounting for re-
latedness and using HIS contrasts as measure of Hsp90 client
status.

Indeed, the PIC of kinase HISs and nucleotide diversity
were positively correlated (r = 0.157, P = 0.04965, supplemen-
tary table S1, Supplementary Material online), suggesting that
Hsp90 client kinases harbor greater genetic variation than
nonclient kinases in humans. This positive correlation sug-
gests that purifying selection is reduced among Hsp90 clients
compared with nonclients, resulting in higher levels of slightly
deleterious mutations. To determine the type of genetic var-
iation that Hsp90 buffered, we examined nucleotide diversity
in nonsynonymous and synonymous sites separately. The
correlation between the PIC of client score and PIC of nucle-
otide diversity was stronger when only considering

nonsynonymous sites (r = 0.23 P = 0.003). In contrast, there
was no significant correlation when only considering synon-
ymous sites (r = 0.03, P = 0.69). This result is consistent with
the notion that it is Hsp90’s function in protein folding that
enables greater dN/dS of its clients rather than the rise of new
mutations, epigenetic phenomena, or other, yet unidentified
mechanism. To further explore this aspect, we examined
whether Hsp90 clients tolerated potentially more deleterious
variation across humans, using both genomic evolutionary
rate profiling (GERP) scores (Cooper et al. 2005) and poly-
morphism phenotyping (PolyPhen) scores (Adzhubei et al.
2010) as measures of the predicted phenotypic effect of indi-
vidual single nucleotide variants (SNVs). GERP ascertains the
degree of past purifying selection on a site through examina-
tion of rejected nucleotide substitutions across homologous
sequences (Cooper et al. 2005), whereas PolyPhen categorizes
nonsynonymous SNVs by likelihood of damaging protein
structure and function (Adzhubei et al. 2010). Although
there was no significant correlation between GERP and HIS
contrasts (r = 0.02, P = 0.7593, Pearson correlation, supple-
mentary table S1, Supplementary Material online), PolyPhen
and HIS contrasts were positively correlated (r = 0.21,
P = 0.00987, Pearson correlation, supplementary table S1,
Supplementary Material online). To summarize, Hsp90
kinase clients appeared to harbor more genetic variation
and more damaging mutations than nonclients across
many human individuals.

Hsp90 Client Status Tends to Be Gained and
Maintained

Our observation that Hsp90’s effect on kinase evolutionary
rate increases with divergence time suggests that client status
is stable over long time periods. This interpretation contrasts
with experimental findings that mutating a single amino acid
residue can suffice to dramatically alter a protein’s depen-
dence on Hsp90 (Citri et al. 2006). Similarly, paralogs or oth-
erwise related proteins that differ only by a few amino acids
can differ in Hsp90 client status (Citri et al. 2006; Lachowiec
et al. 2013), suggesting that Hsp90 client status can be highly
dynamic. To resolve this apparent contradiction, we analyzed
the distribution of Hsp90 client status among gene duplicates
in the kinase superfamily. Gene duplicates tended to share
Hsp90 client status (fig. 2a, �2-test, P = 1.837e-05) indicating
that client status has phylogenetic signal.

This analysis only considered genes with one paralog, elim-
inating one-third of the available kinome data. Therefore, we
explicitly tested whether there was phylogenetic signal in
client status patterns across the entire kinase phylogeny
using Pagel’s � (Pagel 1999). Pagel’s � is a statistic that tests
whether phylogeny correctly predicts the patterns of covari-
ance among species on a given trait. Here, we estimated this
statistic to test whether kinase phylogeny predicts the pat-
terns of covariance among kinases with regard to Hsp90 client
status. Assuming that kinases were either Hsp90 clients or
nonclients, we compared a model in which � was computed
using the known kinase phylogeny (Manning et al. 2002)
(�= 0.74) to a model assuming no phylogenetic signal
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(�= 0, star phylogeny). The former model including phyloge-
netic signal was a better fit for the observed pattern of client
status across the kinase phylogeny than the model without
phylogenetic signal (2�= 8.94, df = 1, P = 0.00279). We con-
clude that client status is not randomly distributed, and that
more closely related kinases tend to share client status across
the whole kinase superfamily.

Having established that client status tends to be shared
among related kinases, we next explored the evolutionary
paths by which client status is acquired and changes through
time.

To do so, we estimated the transition rates between client
and nonclient states along the kinase phylogeny, using max-
imum likelihood (ML) implemented in the software
BayesTraits (Pagel 1999; Pagel et al. 2004). We found that
the rate of the transition from nonclient to client along the
kinase phylogeny was 3.02, compared with the reverse rate of
0.99. Restricting these rates to equal values significantly wors-
ened the model fit (2�= 8.066, df = 1, P = 0.0045), hence we
conclude that kinases are more likely to become Hsp90 clients
than to lose client status (fig. 2b). To examine whether these
ML-derived rates were robust, we also used the Markov Chain
Monte Carlo (MCMC) analysis implemented in BayesTraits to
estimate the rates of gain and loss of client status. The rates of
transition for nonclient to client (3.11) and client to nonclient
(0.98) indicated that rate estimates were robust (fig. 2b).

The tendency of nonclient kinases to become clients and of
client kinases to remain clients agrees with previous sugges-
tions that kinase dependence on Hsp90 may be “addictive”
and may contribute to the greatly increased sensitivity of
cancer cells to Hsp90 inhibitors (Workman et al. 2007).

If protein kinases indeed become “addicted” to being
Hsp90 clients, one may expect the ancestral kinase to be a
nonclient. To infer the client status of the ancestral kinase, we
compared a tree with a nonclient kinase root to a tree with a
client kinase root using MCMC. We found strong support for
the tree with a nonclient root (Bayes factor ~9.1). Both Hsp90
and kinases were present in the eukaryotic common ancestor
(Manning and Hunter 2009; Bogumil et al. 2014); however,
our results would suggest that they likely did not interact.
Although, Hsp90 client predictions and confirmed clients in
the prokaryote Escherichia coli include kinases (Press et al.
2013), these prokaryotic protein kinases belong to a different
kinase family and differ in structure (Manning and Hunter
2009). Taken together, our results are consistent with a sce-
nario in which early kinases evolved independently of Hsp90
with subsequent multiple independent gains of Hsp90 client
status, increasing Hsp90’s effect on kinase evolution and
adding to the overall chaperone dependence of kinases for
their function.

Discussion
Although previous studies showed that Hsp90-dependent
standing variation is common in natural populations
(Rutherford and Lindquist 1998; Queitsch et al. 2002;
Sangster, Salathia, Lee, et al. 2008; Jarosz and Lindquist 2010;
Rohner et al. 2013), the chaperone’s impact on protein evo-
lution, especially in comparison to established factors such as
gene expression, has remained unknown. Here, we present
evidence for a direct role of Hsp90 in kinase evolution and
compare its impact to gene expression levels and PPI
connectivity.

We find that interaction with Hsp90 is associated with
higher dN/dS for kinases, and that Hsp90 client status appears
to contribute to kinase evolutionary rate independently of
gene expression and PPI connectivity. Each of these factors
contributed to a similar degree to kinase evolutionary rate;
combined they explained only about 10% of kinase dN/dS
variation. Adding additional variables may decrease the
amount of unexplained variation, but many variables are
known to covary. For example, Bloom and Adami (2003)
have argued that PPI connectivity is confounded by protein
abundance, with highly abundant proteins engaging in a
larger number of interactions (Bloom and Adami 2003).
Protein abundance arises as a combination of gene expression
levels, and rates of translation and protein degradation.
Others have argued that the dominant role of gene expres-
sion in driving evolutionary rate is at least in part due to
selection for translational robustness, which encompasses se-
lection for increased translational accuracy by optimizing
codon usage, and selection to increase the number of proteins
that fold properly despite mistranslation (Drummond et al.
2005). Previously, optimized codon usage, as measured by
codon adaptation index, was observed for stochastic clients

FIG. 2. Hsp90 client status dynamics across the kinome. (a) Using the
three client classes defined by Taipale et al. (2012), we categorized pairs
of duplicated genes into six classes. We find that gene duplicates share
client status (�2-test, P = 1.837e-05) more often than expected by
chance. The number of expected pairs was calculated based a
random distribution of clients across the tree. (b) Kinases (white) are
three times more likely to gain Hsp90 client status (red) than lose it
based on ML and MCMC estimates of state transition rates using Bayes
Traits.
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of GroEL/ES (Warnecke and Hurst 2010). However, we did not
observe an association between CAI and Hsp90 client score
(P =0.34, R2 = 3.6e-03), possibly reflecting that Hsp90 does not
act as a cotranslational chaperone (Taipale et al. 2010) like
GroEL/ES (Ying et al. 2006). Further, large-scale studies of
translation efficiency and its correlation with CAI in human
have yielded contradictory results, with some studies failing to
find significant correlations (Chamary et al. 2006; Waldman
et al. 2010). We also note that the kinase Hsp90 clients ana-
lyzed here are generally less abundant in steady-state protein
levels (Taipale et al. 2012), presumably due to their enhanced
structural lability. Nevertheless, by using partial contrasts, we
find evidence for a contribution of Hsp90 to kinase dN/dS
independent of expression level and PPI degree.

As suggested by prior studies of Hsp90-dependent varia-
tion within diverse populations of plants, yeast, fly, and fish
(Rutherford and Lindquist 1998; Queitsch et al. 2002; Yeyati
et al. 2007; Sangster, Salathia, Undurraga et al. 2008; Jarosz and
Lindquist 2010), we found support for Hsp90-dependent ge-
netic variation across humans. Both nucleotide diversity and
PolyPhen scores were significantly correlated with kinase HISs;
yet effect sizes were modest. No significant correlations were
observed for GERP scores. The GERP score is a position-spe-
cific estimate of evolutionary constraint using ML evolution-
ary rate estimation (Cooper et al. 2005). High evolutionary
constraint is often interpreted as functional relevance. As we
do not expect Hsp90-dependent variation to reside in highly
constrained sites, it is not surprising that GERP scores for
Hsp90 kinase clients and nonclients did not differ significantly.

In agreement with the modest signal of increased nucleo-
tide diversity within human, we observed an increased evo-
lutionary rate for Hsp90 client kinases across divergent
mammalian lineages, consistent with Hsp90 allowing for
greater accumulation of nonsynonymous changes in the
genes encoding its clients. In fact, Hsp90’s effect on kinase
evolutionary rate increases when considering species that are
more distantly diverged. The greater accumulation of nonsyn-
onymous changes may allow client kinases to explore a wider
sequence space and potentially acquire novel functions at a
faster rate.

Taipale et al. (2012) also determined HISs for a large
number of transcription factors (TFs) and E3 ligases. In con-
trast to our findings for client and nonclient kinases, TF and
E3 ligase HISs were not significantly associated with their
evolutionary rates (supplementary text S1 and fig. S2,
Supplementary Material online). Unlike the kinases analyzed,
the TFs are not monophyletic (Vaquerizas et al. 2009) and
hence may differ more in other factors influencing evolution-
ary rate, such as protein structure and stability. As for the E3
ligases, others have suggested that Hsp90 works in concert
with E3 ligases to promote proteasome-dependent degrada-
tion rather than chaperoning these enzymes (Murata et al.
2001; McClellan et al. 2005; Morishima et al. 2008; Ehrlich et al.
2009; Taipale et al. 2010). Hsp90 works in concert with many
other proteins that enable and modify its function and gen-
erate client specificity, such as diverse Hsp70s, cochaperones,
and immunophilins (Taipale et al. 2010). Although these “col-
laborating” proteins physically interact with Hsp90, they do so

in a sequence-or domain-specific manner, and Hsp90 does
not facilitate their folding (Murata et al. 2001; McClellan et al.
2005; Morishima et al. 2008; Ehrlich et al. 2009; Taipale et al.
2010); hence they are unlikely to experience relaxed selection
due to this interaction. Following this line of reasoning, we
previously excluded known Hsp90 cochaperones and Hsp70s
from evolutionary rate analyses (Lachowiec et al. 2013).

Previously, we found that Hsp90 clients in plants and yeast
showed significantly greater evolutionary rates than their
nonclient paralogs (Lachowiec et al. 2013). The kinome data
set only contained five pairs of strong kinase clients and
nonclients. Although in four of these pairs the strong kinase
client showed greater dN/dS than its nonclient paralog, this
difference was not significant, presumably due to small
sample size (n = 5, 95% confidence interval 0.6–12.6,
P = 0.125, one-sample Wilcoxon test, testing the deviation
from the expected ratio of client/nonclient dN/dS of 1). We
did, however, detect a significant trend for duplicate genes
such that paralog pairs that contained at least one strong
Hsp90 client showed significantly greater divergence than
pairs that did not (supplementary fig. S3, Supplementary
Material online). We speculate that interaction with Hsp90
allows clients to tolerate slightly deleterious, but nonlethal
mutations without losing function, thereby facilitating the
emergence of novel functions over time (Lachowiec et al.
2013).

Beyond paralog pairs, we further explored the relationship
of Hsp90 client status and kinase evolutionary rate among
kinase families. The effect of Hsp90 client status on dN/dS was
consistent across all kinase groups (supplementary fig. S4a,
Supplementary Material online) with greater dN/dS observed
for Hsp90 client kinases compared with nonclient kinases.
The tyrosine kinase (TK) and tyrosine kinase-like (TKL) fam-
ilies were enriched for strong Hsp90 clients (supplementary
fig. S4b, Supplementary Material online), and possibly in part
due to this enrichment, both families showed the highest
evolutionary rates among the tested kinase families (supple-
mentary fig. S4c, Supplementary Material online). TK and TKL
kinase families are evolutionarily young and have been impli-
cated in the rise of multicellularity (Lim and Pawson 2010). In
contrast, of all families, the Calcium and Calmodulin-
regulated kinase (CAMK) family was most depleted for
strong Hsp90 clients. Unlike in all other kinase families, the
few strong CAMK clients did not evolve faster than the weak
clients (supplementary fig. S5, Supplementary Material
online). As almost a third of the CAMK family genes are
pseudogenes (not included in this analysis), contrasting
with only about one-fifth of kinase pseudogenes overall
(Manning et al. 2002), we speculate that the “missing”
strong CAMK clients have become pseudogenes.

These family specific observations and our finding that
kinases tend to acquire and maintain Hsp90 client status
prompt our speculation that Hsp90 may play a complex
role in the birth and death of kinases. The most common
outcome after gene duplication is pseudogenization of one
copy (Nei and Roychoudhury 1973). Acquiring Hsp90 client
status likely leads to instant subfunctionalization due to the
temperature sensitivity of clients and may facilitate gene copy
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maintenance (Lachowiec et al. 2013). The observed greater
accumulation of nonsynonymous variation in genes encoding
Hsp90 client may also facilitate neofunctionalization. At the
same time, the greater accumulation of more harmful varia-
tion may predispose genes encoding clients to the pseudo-
gene fate. In other words, acquiring Hsp90 client status may
be akin to a delayed death sentence on a long evolutionary
timescale.

In fact, the suggested “Hsp90 addiction” of kinases
(Workman et al. 2007), especially in cancer cells with their
mutated oncogenic kinases, is reminiscent of a recent argu-
ment by Fernandez and Lynch (Fern�andez and Lynch 2011).
These authors attributed the increasing complexity of protein
interaction networks from bacteria to human to compensa-
tion for the decreased stability of proteins over evolutionary
time. They posited that through drift proteins would be ex-
posed to destabilizing mutations and hence become suscep-
tible to aggregation and malfunction. Interaction in homo
and heteroprotein complexes will then compensate for the
stability deficits of proteins in higher organisms (Fern�andez
and Lynch 2011). Of course, chaperones also prevent aggre-
gation and stabilize proteins (Taipale et al. 2010). The small
evolutionary snapshot of the kinome with its tendency to
acquire and maintain Hsp90 client status fits well within
this framework of thought.

Materials and Methods

Data Sources and Estimating Contributions to dN/dS

HISs, client category, and number of connections in the PPI
network were obtained from (Taipale et al. 2012). For gene
expression levels in human, RNA-seq counts normalized for
read depth (Reads per kilo-base per million) across 11 normal
human tissues from (Castle et al. 2010) were downloaded
(http://medicalgenomics.org/rna_seq_atlas/ [September,
2012]). The average expression was taken per gene (across
all splice forms), and the maximum and mean expression
across all tissues was calculated. The DNA sequence of the
longest splice form for each kinase was obtained from
Ensembl release 70, (http://www.ensembl.org [March,
2013]). Codon usage bias for humans was obtained from
http://www.kazusa.or.jp/codon/ (last accessed September
25, 2014) (Nakamura et al. 2000). The codon adaptation
index for each kinase was calculated excluding the first 50
and last 20 codons (Warnecke and Hurst 2010) using E-CAI
(http://genomes.urv.cat/CAIcal/E-CAI/, last accessed
September 25, 2014) (Puigbo et al. 2008). Only the 210 kinases
that overlapped between the Hsp90 kinome analysis (Taipale
et al. 2012) and the eukaryotic kinase tree (Manning et al.
2002) and that had values for expression (Castle et al. 2010),
dN/dS, and PPI connectivity were used in the downstream
analyses. Because the phylogenetic relatedness of the kinases
may influence these contributions, we also considered each
variable in a phylogenetic context using pic. Phylogenetic
contrasts for each variable were estimated in R using pic in
the package ape (Paradis et al. 2004) with the kinome tree
from (Manning et al. 2002) (http://kinase.com/human/
kinome/groups/ePK.ph, last accessed September 25, 2014).

We conducted linear regression analyses with the intercept
set to 0 (Garland et al. 1992) because the order of subtraction
to calculate the PIC was arbitrary and calculated the associ-
ation between each pair of variables. Partial correlations
among the variables were calculated with R using pcor in
the package ppcor (http://cran.r-project.org/web/packages/
ppcor/index.html, last accessed September 25, 2014).

dN/dS Comparisons across Species

For each kinase, orthologs for the human kinases and their
respective dN/dS values were identified using Ensembl release
70, (http://www.ensembl.org [March, 2013]) in the following
species: Pan troglodytes, Pongo abelii, Nomascus leucogenys,
Macaca mulatta, Callithrix jacchus, Mus musculus, Rattus nor-
vegicus, Ictidomys tridecmlineatus, Oryctolagus caniculis, Canis
familiaris, Bos taurus, Sus scrofa, and Ailuropoda melanoleuca.
If multiple orthologs were identified, the kinase was removed
from the analysis. Time to common ancestor was obtained
from compiled studies curated at TimeTree.org (Hedges et al.
2006).

Hsp90 Client Divergence Timing among Humans

We acquired human exome sequences from the Exome
Variant Server (Exome Variant Server, NHLBI GO Exome
Sequencing Project [ESP], Seattle, WA) (http://evs.gs.washing
ton.edu/EVS/ [November, 2012]) using an in-house Perl script.

In addition to the filters from the ESP Server, we incorpo-
rated the filters used in (Tennessen et al. 2012): All SNVs had
to have a quality score above 20, allele balancing above 65%,
read depth between 10 and 1,000� to account for possible
copy variation, and we excluded genotype qualities of zero.

To calculate nucleotide diversity, we used

�SNV ¼ 2f 1� fð Þ
n

n� 1
;

where f is the frequency of the major allele and n is the
number of haploid genomes (Hernandez et al. 2011). For
each gene �SNV was summed for each nucleotide position
and normalized for gene length. For gene length, we used the
length of the longest coding sequence (CDS) reported by
Ensembl release 69.

We extracted GERP scores for each SNV from ESP and
calculated the average GERP score for each kinase gene and
normalized the GERP counts by the length of the gene (CDS
sequence). PolyPhen scores were also obtained from ESP.

Examining Client Status Dynamics and Estimating
Transition Rates between Client and Nonclient States

We estimated the phylogenetic signal of client status across
the kinome, Pagel’s �, using the function fitDiscrete in the
package geiger (http://cran.r-project.org/web/packages/
geiger/index.html, last accessed September 25, 2014). We
modeled a kinase tree with all branches leading to tips of
equal length (�= 0) eliminating the phylogenetic signal. We
then compared this model to a model with the true kinase
phylogeny (i.e., an optimized �) using likelihood-ratio tests,
where the likelihood-ratio approximates a �2 distribution
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with one degree of freedom (Harmon et al. 2008; Motani and
Schmitz 2011).

We used BayesTraits v2 (Pagel 1994)(http://www.evolu
tion.rdg.ac.uk/BayesTraits.html, last accessed September 25,
2014) to estimate transition rates along the kinase tree
using a MultiState model of evolution. We used the human
kinase tree and the client status of each kinase, coding both
weak and strong clients (according to Taipale et al. 2012) as
“A” and nonclients as “B.” We then used ML with the param-
eter rate set to two, representing the two transition rates 1)
client to nonclient and 2) nonclient to client. We tested var-
ious hypotheses about transition rate parameters by restrict-
ing transition rates: 1) rate of gain of client status to 0, 2) rate
of loss of client status to 0, and 3) equal gain and loss rates. We
compared the log(likelihood) of the restricted models to one
another and to the log(likelihood) of the unrestricted models.
For these comparisons we used likelihood-ratio tests, where
the likelihood ratio follows a �2 distribution with degrees of
freedom equal to the number of restricted parameters. We
repeated the analysis using MCMC implemented in
BayesTraits v2. We had appropriate levels of acceptance
with the option rateDev set to 2.We let the chain run for
100,000 iterations with a uniform prior distribution between 0
and 100. We examined the transition rates after a 20,000
iteration burn-in period.

To determine the client status of the root kinase, we used
MCMC implemented in BayesTraits v2. We used the kinase
tree and client status coding described above. We fossilized
the root as either A or B for the whole tree. We found ap-
propriate levels of acceptance with the option rateDev set to
1. We ran the chain for 10 million iterations, and compared
the two different client states of the root by calculating the
Bayes Factor based on the harmonic means (twice the differ-
ence between the two harmonic means of the model likeli-
hood) (Pagel et al. 2004).

Examining Nonkinase Hsp90 Interactors

We removed all genes that were found in more than one
functional category: E3 ligases, TF, or kinase. The client status
as defined in Taipale et al (2012) was used for each gene, with
E3 ligases and TFs categorized as “not significant interactor,”
removed from further analyses. We used pairwise dN/dS
values with mouse as an outgroup to examine the dN/dS
among the Hsp90 interactors and noninteractors. Neither
TFs nor E3 ligases are monophyletic. We subdivided the TFs
into phylogenetically related families (Vaquerizas et al. 2009)
and compared the dN/dS between Hsp90 interactors and
noninteractors within each family and in aggregate.
Subdividing E3 ligases into phylogenetic groups based on se-
quence similarities has not been previously conducted, so we
subdivided E3 ligases based on domain presence (Kelch,
WD40 from (Taipale et al. 2012) or RING, U box, HECT, F
box, SOCS box, BTB, DDB1-like, ZnF A20 from Li et al. [2008])
and compared the dN/dS between Hsp90 interactors and
noninteractors within each group. Because no differences in
dN/dS were found between Hsp90 interactors and non-
interactors within groups defined by individual domains, we
also clustered E3 ligases based on presence or absence of

many domains simultaneously. E3 domains were identified
using PFAM version 26. Clustering was completed using hi-
erarchical clustering in R with the function heatmap.

Supplementary Material
Supplementary text S1, table S1, and figures S1–S5 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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