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Abstract

This paper presents a new mechanism to enhance the evolutionary process of au-
tonomous agents through lifetime adaptation by imitation. Imitation is an effective
method for learning new traits and is naturally applicable within the evolutionary
paradigm. We describe a set of simulations where a population of agents evolve to
solve a certain task. In each generation, individuals can select other agents from the
population as models (teachers) and imitate their behavior. In contradistinction to pre-
vious studies, we focus on the interaction between imitation and evolution when imi-
tation takes place only across members of the same generation, and does not percolate
across generations via vertical (cultural) transmission. We show how this mechanism
can be applied to successfully enhance the evolution of autonomous agents, when
other forms of learning are not applicable.

1 Introduction

A large body of work in recent years has studiedthe interaction between lifetime learning
and genetic evolutionwhen lifetime adaptations, acquired by learning, are not inherited.
Hinton and Nowlan (1987) introduced a simple model that demonstrates how learning
can guide and accelerate evolution. Nolfi et al. (1994) presented experimental results sup-
porting this view, even when the learning task differs from the evolutionary task. Other
researchers (Nolfi and Parisi, 1997; Floreano and Mondada, 1996) studied the interac-
tion between learning and evolution in robots and artificial agents systems. These studies
employed various sources of training data such as external oracles, regularities in the
environment or ”self-generated” teaching data. There is, however, an additional source
of training data; one which is naturally available within the evolutionary paradigm - the
knowledge possessed by other members of the population. This knowledge can be har-
nessed to improve the evolutionary process in the form oflearning by imitation.

The motivation for using learning by imitation to enhance evolution is twofold. First,
imitation is an effective and robust way to learn new traits by utilizing the knowledge al-
ready possessed by others. The existence of true imitative behavior in the animal kingdom
is still in debate, however, social learning can be found in a variety of species providing
clear benefits over other forms of learning (Kawamura, 1963; Whiten and Ham, 1992;
Zentall, 2001). Second, while oracles or other forms of supervised training data are scarce
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in agent environments, learning by imitation is still a valid option, using other members
of the population as teachers.

Extending these studies further,our goal is to put forward a novel framework for
merging these two approaches and study learning by imitation within the scope of the
interaction between learning and evolution. We wish to explorelearning by imitationas
an alternative to conventional supervised learning and to apply it as a tool to enhance
genetic evolution. We will label this framework asimitation enhanced evolution (IEE).

Learning by imitation has already been applied by researchers in the fields of artificial
intelligence and robotics in various experiments. Hayes and Demiris (1994) presented a
model of imitative learning to develop a robot controller. Billard and Dautenhahn (1999)
studied the benefits of social interactions and imitative behavior for grounding and use of
communication in autonomous robotic agents. For an up-to-date introduction to work on
imitation in both animals and artifacts see the cross-disciplinary collection (Dautenhahn
and Nehaniv, 2002). Furthermore, various frameworks that study the interaction between
cultural transmission and evolution have already been well established (e.g. Boyd and
Richerson, 1985; Cavalli-Sforza and Feldman, 1981; Laland, 1992). Gene-culture co-
evolution accounts for many adaptive traits (Feldman and Laland, 1996). Studies and
simulations of the evolution of language (Ackley and Littman, 1994; Kirby and Hurford,
1997; Arbib, 2002) assume, by definition, some sort of cultural transmission.

It is important to realize though, that in contradistinction to these studies, our frame-
work does not employ cultural evolution. In fact, we preclude culture from evolving in the
first place.Following in the footsteps of the studies of the interaction between learning
and evolution cited above, we thus avoid any direct form of acquired-knowledge transfer
between generations either genetically or culturally. We work in a strict Darwinian frame-
work, where lifetime adaptations are not directly inherited (although, as demonstrated in
some of the studies cited above, they may be genetically assimilated through the Baldwin
effect, 1896) and may affect the evolutionary process only by changing the individual’s
fitness, and thus the number of its offsprings. In terms of cultural transmission (see Boyd
and Richerson, 1985, for a detailed definition), we allowhorizontaltransmission alone
(where individuals of the same generation imitate each other) and exclude any form of
verticaltransmission (where members of the current generation transmit their knowledge
to members of the next generation). Numerous field studies suggest that at least in non-
human societies, horizontal transmission is far more common than vertical transmission
(Laland, 1992). Furthermore, to prevent any form of cultural evolution from taking place,
within each generation, only innate behaviors are imitated; that is, we prevent behaviors
acquired by imitation from being imitated again by another member.

A simple model that fits this framework has been studied before by Best (1999). He
demonstrated an extension of the computational model presented in Hinton and Nowlan
(1987), introducing social learning (namelyimitation) as an additional adaptive mecha-
nism. The reported results exemplify how horizontal cultural transmission can guide and
accelerate the evolutionary process in this simplified model. Best has also demonstrated
how social learning may be superior to conventional learning and yield faster convergence
of the evolutionary process. However, Best’s model has several limitations. The evolu-
tionary fitness function (which is the one used in Hinton and Nowlan, 1987) represents
a worst-case scenario where only the exact solution has a positive fitness value. There
is no probable path that a pure evolutionary search can take to discover this solution.
Additionally, there is no distinction between genotypes and phenotypes and thus no real
phenotypicadaptation process. Imitation is carried out simply by copying certaingenes
from the teacher’s genome to the student.

We wish to generalize this framework and study the effects of learning by imitation
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in a more realistic scenario ofautonomous agents evolution(see Ruppin, 2002, for a
general review). The definition of imitation in the literature varies considerably (Billard
and Dautenhahn, 1999), but for the purpose of this paper we use imitation (or learning by
imitation) in the sense of having an individual (student) being able to match its behavior
to that of a demonstrator (teacher). In particular, using autonomous agents to model the
population members, this form of imitation is implemented by using the teacher’s output
for each sensory input, as the target output in a back-propagation training algorithm. We
focus on the effects that imitation may have on the genetic evolutionary process, starting
with the most basic question:can imitation enhance the evolution of autonomous agents
(in the absence of vertical transmission), in an analogous manner to the results previously
shown for supervised learning, and how?Although it was shown thatlearningcan guide
the evolutionary process (e.g., via the Baldwin effect), the contribution ofimitation to
evolution is not obvious; while in late stages of the evolutionary process the best agents
may already possess sufficient knowledge to approximate a successful teacher, in early
stages of the process it may be the case of “the blind leading the blind”, resulting in a
decrease of the population’s average fitness.

This paper presents a set of simulations, where lifetime learning by imitation was used
to adapt individuals that go through an evolutionary process. The results are compared
with those of a simple evolutionary process, where no lifetime learning is employed, and
with those of an evolutionary process that employs conventional supervised learning.

The remainder of this paper is organized as follows. We begin in Section 2 with a brief
overview of the effect of lifetime adaptation on the evolutionary process. In Section 3 we
present theIEE model in details. To validate the effectiveness of our model we introduce
in Section 4 a set of tasks which were used to test our model and the experimental results
in Section 5. The paper concludes with a discussion of future work and a short summary.

2 The Effects of Lifetime Adaptation on Genetic Evolu-
tion

Studies of the interaction between lifetime learning and evolution (Hinton and Nowlan,
1987; Nolfi et al., 1994; Nolfi and Parisi, 1997; Floreano and Mondada, 1996) have shown
that learning can accelerate and guide the genetic evolutionary process. These studies
demonstrated (through both theoretical analysis and simulations) how thedynamicsof
the lifetime adaptation process can account for this positive effect. The phenotypic mod-
ifications that take place in an individual subject to lifetime adaptation (e.g. learning),
significantly depend upon its innate configuration. Individuals which initially have a low
fitness value, may attain higher fitness through learning. The expected fitness gain though,
will be higher for individuals which are initially closer to the optimum configuration. As
illustrated in Figure 1, learning can thus help to reveal the innate potential of each individ-
ual in the population. One may consider lifetime adaptation as a local search process that
can enhance the global search (evolution) by determining which configurations lie in the
vicinity of the global optimum solution and are thus worthwhile retaining in the popula-
tion (as they have a better chance to produce successful offsprings). From a mathematical
standpoint, lifetime adaptation can be conceived as afunctionalthat can potentially trans-
form an initially ragged fitness function into a smoother function, making the evolutionary
process more effective.

Our hypothesis is that learning by imitation, that is, using the best individuals in the
population as teachers, may be sufficient to reveal the innatepotentialof the population
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members. The results reported in the following sections clearly validate this assumption.
In this study we focus on the simple case where the learning (imitation) task is similar

to the evolutionary task. This case most probably does not closely represent the imitation
processes found in nature. Lifetime adaptation in humans and other cultural organisms
operates on high-level traits which are not coded directly in their genome. However, we
believe that this simple scenario can provide valuable insights into the roots of imitative
behavior. We further discuss this topic in Section 6.

Figure 1: An illustration of the effect that lifetime adaptation may have on the genetic
evolutionary process. Both agents start with the same innate fitness value (indicated by the
black dots). Applying lifetime adaptation (illustrated as a simple hill climbing process)
will result in the selection of agent A which is closer to the optimal solution. Inspired by
Nolfi and Floreano (1999)

3 The Model

A haploid population of agents evolve to solve various tasks. Each agent’s neurocon-
trollers is a simple feed-forward (FF) neural network (Hertz et al., 1991). The initial
weights of the network synapses are coded directly into the agent’s genome (the network
topology is static throughout the process). The initial population is composed of 100 indi-
viduals, each assigned randomly selected connection weights from the interval [-1,1]. The
innate fitnessof each individual is determined by its ability to solve the specific task upon
birth. Within the pure evolutionary process, the innate fitness will determine the reproduc-
tive probability of this individual. Each new generation is created by randomly selecting
the best agents from the previous generation according to their innate fitness, and allowing
them to reproduce (Mitchell, 1996). During reproduction, 10% of the weights are mutated
by adding a randomly selected value from the interval [-0.35,0.35]. The genomes of the
best 20 individuals are copied to the next generation without mutation.

When conventional supervised learning is applicable (i.e., an explicit oracle can be
found) we also examined the effect of supervised learning on the evolutionary process.
Each individual in the population goes through a lifetime learning phase where the agent
employs a back-propagation algorithm (Hertz et al., 1991), using the explicit oracle as a
teacher. Its fitness is then reevaluated to determine itsacquired fitness(i.e., its fitness level
after learning takes place). In order to simulate the delay in fitness acquisition associated
with acquired knowledge, we use the average of the innate and acquired fitness values as
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the agent’sfinal fitnessvalue. This fitness value is then used to select the agents that will
produce the next generation.

In the IEE paradigm, agents do not use conventional supervised learning, but rather
employ learning by imitation. In every new generation of agents, created by the evo-
lutionary process, each agent in the population selects one of the other members of the
population as an imitation model (teacher). Teachers are selected stochastically, where
the probability of selecting a certain agent as a teacher is proportional to itsinnatefit-
ness value (i.e., its initial fitness levels before learning takes place). The agent employs
a back-propagation algorithm, using the teacher’s output for each input pattern as the
target output, mimicking a supervised learning mode. The imitation phase in each gener-
ation can be conceived as happening simultaneously for all agents, preventing behaviors
acquired by imitation from being imitated. Only theinnatebehavior of the teacher is
imitated by the student. Theacquired fitnessandfinal fitnessare evaluated in the same
method that was described in the case of conventional learning.

As stated above, acquired knowledge does not percolate across generations. Each
time a new generation is produced, all lifetime adaptations possessed by the members
of the previous generation are lost. Newborn agents inherit only the genome of their
parents which does not encode the acquired network adaptations that took place during
the parent’s lifetime. Successful individuals that were copied from the previous generation
also go through a new genotype-to-phenotype ontogenetic development process and thus
lose all adaptations acquired during the previous generation.

To summarize, learning by imitation in a population of evolving agents (IEE) works
as follows:

1. Create the initial population. Assign the network weights of each individual with
randomly selected values.

2. Repeat:

(a) For each individual in the population:

i. Evaluate the innate fitnessFi.

(b) For each individualS in the population:

i. SetS to be the student.
ii. Select a teacherT from the population. The probability of selecting a

certain individual as a teacher is proportional to its innate fitness value
Fi.

iii. Train S with back-propagation algorithm. Use the output ofT as the
desired output (when computing the output ofT , use the innate configu-
ration of T ).

iv. Evaluate the acquired fitnessFa of S.

(c) For each individual in the population:

i. Evaluate the final fitnessFf = Fi+Fa

2 .

(d) Create the next generation by selecting the best individuals according toFf

and allow them to reproduce as described above.

4 The Tasks

The model described in the previous section was tested on three different tasks. The first
two are standard classification benchmark problems. The third is an agent-related task
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used in previous studies of the interaction between learning and evolution.

4.1 The Parity Problem

The agents evolved to solve the five bit parity problem. A network topology of 5-6-2-1
was used (i.e., 5 input neurons, two hidden layers, the first with 6 neurons and the second
with 2, and 1 output neuron), with an additional threshold unit in each layer. All 32
possible input patterns were used both for evaluating the network performance and for
training.

4.2 The Triangle Classification Problem

A simple two-dimensional geometrical classification problem was used in this task. The
network receives as input a point from the unit square and should determine whether it
falls within the boundaries of a predefined triangle. A network topology of 2-5-1 was used
(with an additional threshold unit in each layer). The test set and training set consisted of
100 points randomly selected from the unit square.

4.3 Foraging

The task in this simulation is similar to the one described by Nolfi et al. (1994). An
agent is placed on a two-dimensional grid-world (Figure 2). A number of food objects are
randomly distributed in the environment. As its sensory input the agent receives the angle
(relative to its current orientation) and distance to the nearest food object. The agent’s
output determines one of four possible actions: turn 90 degrees left, turn 90 degrees right,
move forward one cell, or do nothing (stay). If the agent encounters a food object while
navigating the environment, it consumes the food object. The agent’s fitness is the number
of food objects that were consumed during its lifetime. Each agent lives for 100 time steps

Figure 2: The foraging task: The agent (triangle) navigates in a 2D grid-world. Food
objects (stars) are randomly distributed in the world. The agent can turn 90 degrees left,
turn 90 degrees right, move one cell forward, or stay. Each time the agent encounters a
food object, it consumes the food object and gains one fitness unit. Inspired by Nolfi and
Floreano (1999)
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in a 30x30 cells world which initially contains 30 food objects. A network topology of
2-6-2 was used (with an additional threshold unit in each layer).

In this task, unlike the previous ones, there is no explicit oracle we can use to train the
agent. Nolfi et al. (1994) used available data to train the agent on the task of predicting
the next sensory input, which differs, but is in some sense still “correlated” with that of
finding food (the evolutionary task). In our model, we can still use the same mechanism
of learning by imitation to train the agent on the original evolutionary task, using the best
individuals in the population as teachers.

There are several strategies we can apply to determine which sensory input patterns
should be used for training. Randomly selecting arbitrary input patterns, as we did in
previous tasks, is not a suitable strategy here as the real input distribution that an agent
encounters while navigating the environment may differ considerably from a uniform
distribution. However, two behaviorally motivated strategies may be considered: aquery
model and anobservationalmodel. In the query model, the student agent navigates in
the environment and for each sensory input pattern it encounters, the student queries the
teacher to obtain the teacher’s output for this pattern. The teacher’s output is than used as
the target output in back-propagation training of that pattern. In the observational model,
the student “observes” the teacher agent as the teacher navigates in the environment and
uses the sensory input patterns encountered by the teacher as training patterns (again,
using the teacher’s output for the back-propagation algorithm). Using this model we can
further limit the observed patterns to those which occur during time steps that precede
the event of finding food. This constraint will allow the student to imitate only useful
behavioral patterns. We will label this strategy asreinforced agent imitation (RAIL).

5 Results

We first studied IEE in the two classification tasks described in Sections 4.1 and 4.2,
where conventional supervised learning can still be applied. In these tasks we were able
to compare the effects that both lifetime adaptation mechanisms (i.e., learning and imi-
tation) have on the evolutionary process. The results clearly validate that the IEE model

Figure 3: The triangle classification task: the innate fitness of the best individual in the
population as a function of generation.
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consistently yields an improved evolutionary process. Theinnate fitnessof the best indi-
viduals in populations generated by applying learning by imitation is significantly higher
than that produced by standard evolution.

Figure 3 illustrates theinnateperformances of the best agent as a function of genera-
tion, in populations evolved to solve the triangle classification problem (Section 4.2). To
evaluate the agent’s classification accuracy we use the Mean-Square Error (MSE) measure
to calculate the distance between the network predicted classification and the true clas-
sification, averaged over all the patterns in the test set. Fitness is defined as(1−Error).
The results of a simple evolutionary process (dashed line) and of an evolutionary process
that employs conventional supervised learning (dotted line) are compared with those of
an evolutionary process that employs learning by imitation (solid line). Each curve repre-
sents the average result of 4 different simulation runs with different, randomly assigned,
initial connection weights. The results presented in Figure 3 demonstrate how applying
either of the learning paradigms yields better performing agents than those generated by a
simple evolutionary process. In fact, applying learning by imitation produces practically
the same improvement throughout the process as does conventional supervised learning.

When facing the 5-bit parity task, the effect of applying lifetime adaptation is even
more surprising. Figure 4 illustrates theinnateperformances of the best agent as a func-
tion of generation, in populations evolved to solve the 5-bit parity problem. Each curve
represents the average result of 10 different simulation runs with different, randomly as-
signed, initial connection weights. While simulations applying the IEE model still out-
perform the simple evolutionary process, using conventional supervised learning actually
results with a significant decrease in performances. The problematic nature of this spe-
cific task may account for these poor results. The parity problem, although often used as
a benchmark, is considered to be a difficult and atypical classification problem (Fahlman,
1989). Learning algorithms facing this task tend to get trapped in local minima. How-
ever, learning from an imperfect teacher, as is the case in learning by imitation, induces a
certain level of noise into the learning process and may thus help to prevent the process
from getting stuck.

Evidently, learning by imitation has a similar (if not superior) effect on the evolution-

Figure 4: The 5-bit parity task: the innate fitness of the best individual in the population
as a function of generation.
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ary process to the one that was previously shown for conventional supervised learning.
The knowledge possessed by the best members of the population can be used as alterna-
tive training data for other members, even in the early stages of the evolutionary process.
We then turned to use IEE to enhance evolution where explicit training data is not avail-
able. This is the case in the foraging task described in Section 4.3.

Figure 5: The foraging task: the averageinnate fitnessof the population as a function
of generation. The results of a simple evolutionary process are compared with those of
simulations that employed lifetime imitation with two distinct adaptation forces (2 and 8
learning iterations).

Figure 5 illustrates the results of the simulations in which the agents faced the foraging
task. The averageinnate fitnessof the population in a simple evolutionary process is com-
pared with the averageinnate fitnessof populations that applied learning by imitation. The
agents in this simulation employed theRAIL strategy of imitation. Fitness is measured as
the number of food objects an agent consumes during its lifetime. Each curve represents
the average result of 10 different simulation runs with different, randomly assigned, ini-
tial connection weights. As can be seen in Figure 5, autonomous agents produced by our
model demonstrate better performances than those generated by the simple evolutionary
process; that is, theirinnatecapacity to find food in the environment is superior.

We also examined the effect of employing differentadaptation forces. In our ex-
periments, the adaptation force is implemented simply as the number of learning (back-
propagation) iterations we apply in each lifetime adaptation phase. The results illustrated
in Figure 5 also demonstrate that a higher adaptation force (i.e., a higher number of iter-
ations in each imitation phase) further improves the performance of the resulting agents.
This effect coincides with an analogous effect reported by Best (1999) where higher trans-
mission force resulted with faster convergence of the evolutionary process.

To further explore the effects of lifetime imitation on evolution, we examined the
improvement in fitness during lifetime as a function of generation. The improvement
can be evaluated by calculating the difference between theacquired fitnessand theinnate
fitness(i.e., Fa − Fi) in every generation. The results illustrated in Figure 6 clearly
demonstrate that in very early stages of the evolutionary process, the best agents in the
population already possess enough knowledge to improve the fitness of agents that imitate
them. In fact, the contribution of imitative learning decreases as the evolutionary process
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Figure 6: The foraging task: the improvement of the population average fitness gained by
lifetime imitation as a function of generation.

proceeds, probably due to population convergence to high performance solutions.
An additional observation on the interaction between lifetime adaptation and evo-

lution can be obtained from examining the diversity of the population throughout the
evolutionary process. The average genome variance of the population, i.e., the variance
among the population members, in the value of each gene (encoding a certain network
weight) averaged over all genes, can serve as a measure of the population’s diversity. As
demonstrated in Figure 7, during the first few generations, the population’s initial diver-
sity decreases rapidly due to the selection pressure of the evolutionary process. However,
throughout most of the following generations, the diversity found in populations subject
to lifetime adaptation by imitation is higher than the diversity of populations undergoing a

Figure 7: The foraging task: the average genome variance as a function of generation with
and without imitation. Populations that employ lifetime adaptation, maintain a higher
diversity throughout the evolutionary process.
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simple evolutionary process. Allowing members of the population to improve their fitness
through lifetime adaptation before natural selection takes place facilitates the survival of
suboptimal individuals and helps to maintain a diversified population. This feature can
partly account for the benefit gained by applying lifetime adaptation to agents evolution.

6 Discussion

This paper demonstrates how learning by imitation can be applied to an evolutionary
process of a population of agents, utilizing the knowledge possessed by members of the
population. Our IEE model proves to be a powerful tool that can successfully enhance
evolutionary computation simulations in agents.

In our model, the agents’ ability and incentive to imitate is assumed to be instinc-
tive. Quoting Billard and Dautenhahn (1999), “our experiments address learning by im-
itation instead of learning to imitate”. The imitation paradigm presented in this paper
additionally assumes that the agents can estimate the fitness of their peers (i.e., more suc-
cessful agents are larger and look healthier, etc.). More specifically, the RAIL strategy,
where agents imitate only successful behavior, assumes that agents can detect significant
changes in the fitness of their peers during their lifetime or identify specific activities that
may contribute to their fitness. The model presented in Section 3 can provide a frame-
work to explore ways in which these assumptions can be relaxed. Coding the imitative
behavior patterns themselves into the genome might result in the spontaneous emergence
of imitative behavior in a population of agents. Behavior patterns that can be coded may
include attributes such as the imitation model selection scheme, imitation strategy, imi-
tation period, etc. Our model can also be extended to study the incentive that should be
provided to an agent to make it assume the role of a teacher. Teaching, or even allowing
someone else to imitate one’s actions is, by definition, an altruistic behavior, and might
have various costs associated with it. We wish to explore the conditions which may lead
to the emergence of active teaching even in the presence of a fitness penalty for such a
behavior. Such favorable teaching conditions may arise when the fitness associated with
various actions is correlated with the frequency of these actions in the population (see
also Boyd and Richerson, 1985, for a discussion of frequency-dependent bias). A good
example of this case can be found in the emergence of normative behaviors (Axelrod,
1986; Flentge et al., 2001). Since the IEE model presented here entails a relatively simple
form of cultural transmission, confined to horizontal transmission of innate behaviors, it
can serve as a solid testbed for future studies of the emergence, evolution and prevalence
of imitation.

7 Summary

Our study focuses on the effects of imitation on the evolution of agents in the absence of
cultural evolution. We show that introducing the adaptive mechanism of lifetime learn-
ing by imitation can significantly enhance the evolutionary processes, resulting in better
performing agents. This paradigm is particulary useful in evolutionary simulations of
autonomous agents, when conventional supervised learning is not possible. Our model
can serve as a theoretical and experimental framework to further explore central issues
concerning the interaction between imitation, learning and evolution.
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