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Cumulative cultural change requires organisms that are capable of both exploratory individual learning and faithful social learning.

In our model, an organism’s phenotype is initially determined innately (by its genotypic value) or by social learning (copying a

phenotype from the parental generation), and then may or may not be modified by individual learning (exploration around the

initial phenotype). The environment alternates periodically between two states, each defined as a certain range of phenotypes

that can survive. These states may overlap, in which case the same phenotype can survive in both states, or they may not. We

find that a joint social and exploratory individual learning strategy—the strategy that supports cumulative culture—is likely to

spread when the environmental states do not overlap. In particular, when the environmental states are contiguous and mutation

is allowed among the genotypic values, this strategy will spread in either moderately or highly stable environments, depending

on the exact nature of the individual learning applied. On the other hand, natural selection often favors a social learning strategy

without exploration when the environmental states overlap. We find only partial support for the “consensus” view, which holds that

individual learning, social learning, and innate determination of behavior will evolve at short, intermediate, and long environmental

periodicities, respectively.
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The distinguishing feature of human (Homo sapiens) culture as

opposed to animal cultures is that it is cumulative (Alvard 2003;

Henrich and McElreath 2003; Laland and Hoppitt 2003). Thus,

as Tomasello (1999, p. 512) explains, “no single child or group

of children could on their own . . . create any version of modern

human culture . . . . The most distinctive characteristic of human

cultural evolution . . . is the way that modifications to an artifact

or a social practice made by one individual or group of individuals

often spread within the group, and then stay in place until some

future individual or individuals make further modifications—and

these then stay in place until still further modifications are made.”

Interestingly, cumulativeness is perhaps lacking from the lithic

tradition of even our nearest hominid relatives, the Neandertals

(Akazawa et al. 1998; Klein 1999). In the case of the Neander-

tals, innovations are relatively few and far between, so that the

Mousterian industry appears to stagnate.

For culture to change cumulatively (i.e., to “evolve” in the

human sense), there must be both a source of innovations or novel

behaviors and an accurate transfer of information between gen-

erations. In fact, the ability to absorb the extant culture and then

to build creatively on it must reside in the same organism. The

psychological processes that generate innovations and novel be-

haviors, such as trial-and-error and insight, constitute individual

learning. Social learning, which entails the transfer of information
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between socially interacting individuals, is the generic term for the

psychological processes that support cultural inheritance (Cavalli-

Sforza and Feldman 1981; Durham 1991). In social learning, an

“observer” adopts (or attempts to replicate) the behavior exhib-

ited by an “exemplar” (Galef 1988; Whiten and Ham 1992; Heyes

1993), e.g., by teaching, imitation, or local enhancement.

Social learning and individual learning are two different

strategies, which presumably evolved because of the advantages

they conferred in gathering information about the environment. A

third source of information, found in the genes, is expressed as

innate behavior. Reviews of the factors contributing to the emer-

gence of learning have emphasized the role played by a temporally

changing environment (Laland et al. 2000; Richerson and Boyd

2000; Alvard 2003; Henrich and McElreath 2003). These writers

agree individual learning, social learning (from the parental gener-

ation), and innate determination of behavior are favored by natural

selection when environmental changes occur at short, interme-

diate, and long intervals, respectively (where time is measured

in generations). Longer intervals between environmental changes

imply longer periods of stasis and hence greater environmental

stability (predictability).

Theoretical studies by Boyd and Richerson (1985 chapter 4,

1988), Rogers (1988), and Feldman et al. (1996) provided the mo-

tivation, and also some support, for this proposal. More recently,

Wakano et al. (2004) and Aoki et al. (2005) showed rigorously

that this consensus view is basically true for regularly, and also

randomly, changing environments, by simultaneously comparing

individual learners, social learners, and “innates” (organisms be-

having innately) when they are in direct competition with each

other. In particular, they identified a threshold value of the (aver-

age) interval between environmental changes, such that the innates

are fixed above, but are absent below this threshold. Below this

threshold, individual and social learners are at polymorphic equi-

librium. Moreover, the equilibrium frequency of social learners

increases, and that of individual learners decreases, as the interval

becomes longer (see also Rogers 1988; Feldman et al. 1996). In a

similar vein, Wakano and Aoki (2006), who investigated a mixed

strategy model, showed that the attractive evolutionarily stable

strategies (Britton 2003; Doebeli et al. 2004) are a pure innate

strategy and a mixed learning strategy. For the mixed learning

strategy, dependence on social learning will be stronger, and that

on individual learning will be weaker, when the environment is

more stable (see also Boyd and Richerson 1985 chapter 4, 1988;

Feldman et al. 1996).

In these models, individual and social learning are comple-

mentary, so that an increase in the frequency of, or dependence

on, one entails a decrease in the frequency of, or dependence on,

the other. However, it is more pertinent to assume that the same

organism may carry out both individual and social learning, and

that these abilities may change independently. In fact, the efflo-

rescence of the Upper Paleolithic with its highly innovative and

variegated tool set strongly suggests that the individual and social

learning abilities of our ancestors both underwent some evolu-

tionary improvement before (or perhaps concurrent with) their

departure from Africa. (See Klein 1999 for a similar although not

identical view.) This situation can be ameliorated by assuming, as

we do in this article, that the propensity for social learning and

the strength of individual learning are determined separately by

different genes.

Most theoretical investigations of the evolution of social

learning in a fluctuating environment have viewed social learn-

ing in essentially the same way; a social learner acquires its

behavior—or, rather, the information required to express the

behavior—from a random member of the parental generation

(oblique transmission). This behavior will be adaptive or maladap-

tive depending on whether the information obtained is appropriate

to its current environmental state.

On the other hand, individual learning has been modeled

in various ways. The simplest model assumes that an individ-

ual learner always achieves the correct behavior (Rogers 1988;

Feldman et al. 1996), but suffers an exogenous cost, for exam-

ple due to mistakes made before the mature behavior is real-

ized. Another model allows for the possibility that an individual

learner may adopt either the correct or incorrect behavior (Boyd

and Richerson 1988). The extent to which the probability of the

former exceeds that of the latter depends on the quality of the

environmental information available to the individual learner. In

yet a third—the “guided variation” model—the behavioral phe-

notype is represented by a number (Boyd and Richerson 1985

chapter 4). Each organism acquires its “initial phenotype” by so-

cial learning (copying a phenotype from the parental generation),

or alternatively, the initial phenotype is determined innately (by

its genotypic value). This initial phenotype is then modified by in-

dividual learning. The resulting “mature phenotype” is assumed

to lie closer on average to the optimal (highest fitness) phenotype

in the current environmental state.

The model of individual learning that we adopt in this article

is motivated by the guided variation model. However, the most

important consequence of individual learning may be that it in-

troduces variation in the mature phenotypes, which as a result are

distributed around the initial phenotype. On this view, it is not

essential that the center of this distribution be biased toward the

optimal phenotype. Hence, we define individual learning to be

“exploration” around an initial phenotype, and we describe below

how this exploration can be regarded as symmetric (unbiased) or

asymmetric (biased).

Another factor missing from some previous theory is that the

magnitude of (as opposed to the interval between) environmen-

tal changes has been ignored. The models developed by Boyd and

Richerson (1985 chapter 4, 1988) are exceptional in this regard, but
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in general the subject has not received sufficient attention. We will

show in this article that predictions regarding the evolution of indi-

vidual and social learning are critically affected by whether there is

overlap in the states corresponding to the different environments.

An additional body of work that focuses on the trade-off be-

tween learning and innately defined behavior is concerned with

foraging strategies and takes a purely phenotypic approach (e.g.,

Rodriguez-Gironés and Vásquez 1997; Eliassen et al. 2007). Al-

though these studies address the same fundamental question as

our article, there are several important differences. First, although

our interest lies mainly with environmental changes across gen-

erations and their effect on the evolution of inherited learning

strategies, foraging studies are mostly concerned with the effect

of environmental changes (or lack of information) within a sin-

gle generation and apply optimality analysis to identify the role

of learning. Second, these foraging models often have the draw-

back of not considering the possible interaction (or competition)

between different strategies and its potential consequences.

In this article, we define four (generic) strategies, “genetic,”

“genetic explorer,” “social learner,” and “social learner explorer,”

and develop a new model that permits these strategies to interact

and to be in direct competition with each other, rather than being

sequestered in separate populations. Our formulation entails that

social learning and exploratory individual learning are determined

by different genes, making it possible for neither, one of the two, or

both to evolve. We investigate how the evolutionary equilibria are

affected by environmental periodicity, overlap of environmental

states, as well as mutation between the genotypic values.

Before embarking on the technical treatments, it will be use-

ful to provide a brief intuitive explanation of these four strategies.

The descriptions differ depending on whether individual learning

is assumed to be symmetric or asymmetric. In the former case,

the mature phenotype of the genetic (G) strategist is always equal

to its genotypic value, and the social learner (S) strategist ac-

quires its mature phenotype without error by pure social learning.

Furthermore, the initial phenotypes of genetic explorer (GE) and

social learner explorer (SE) strategists are identical to the mature

phenotypes of G and S strategists, respectively, but exploratory

individual learning yields mature phenotypes that are distributed

symmetrically around the initial phenotypes. With asymmetric in-

dividual learning on the other hand, the mature phenotype, or dis-

tribution of mature phenotypes, of each strategy explained above

is biased toward the optimal phenotype in the current environmen-

tal state. Hence, all four strategies in this case can on the standard

view be regarded as including an individual learning component.

The Three-Locus Model
Assume an infinite population of haploid asexual organisms. This

simplifying assumption is shared by all previous theoretical work

(Boyd and Richerson 1985 chapter 4, 1988; Rogers 1988; Feldman

et al. 1996; Wakano et al. 2004; Aoki et al. 2005; Wakano and Aoki

2006). The life-history events, to be explained in detail below,

are innate determination or social learning, individual learning,

natural selection, and reproduction with or without mutation.

The phenotype of an organism is represented by an integer.

We follow Boyd and Richerson (1985 chapter 4) in referring to

the phenotype after innate determination or social learning as the

initial phenotype and the phenotype after individual learning as

the mature phenotype. Let x be the initial, and z the mature phe-

notype. The state of the environment, y, is measured on the same

scale as the phenotype. By environmental state y, we mean that

an organism whose mature phenotype lies between y − w and

y + w (w ≥ 0) survives to reproduce (has fitness 1). Those or-

ganisms whose mature phenotypes lie outside this range leave no

descendants (have fitness 0), either genetic or cultural. The fitness

function is rectangular, where w may appropriately be called the

environmental tolerance. Hence, all phenotypes within this closed

interval [y − w, y + w] have equal fitness. We will refer to y as

the environmental optimum, although the fitness function is in

fact assumed to be flat. Furthermore, we assume that the environ-

ment alternates between the two states y1 and y2 (where y1 < y2,

but w is the same for both y1 and y2), with a change occurring

every l generations. Note that the interval between environmen-

tal changes is l generations, but the environmental periodicity or

cycle is 2l generations.

Two loci are involved in the expression of the initial pheno-

type. The first locus determines the genotypic value g. The second

gives the probability k (0 ≤ k ≤ 1) that the organism will rely on

social learning. We assume that social learning is oblique, so that a

random surviving member of the parental (previous) generation is

copied. When there is no social learning, the initial phenotype x is

simply g. When social learning occurs, however, the distribution

of the initial phenotype x depends on k. To formalize these ideas,

we define � t (x | g, k) to be the distribution of the initial phenotype

x among g, k organisms (organisms with genotypic value g and

probability of social learning k) in generation t and assume that

� t (x | g, k) = (1 − k)�xg + k� t−1(x), (1)

where � t−1(·) is the distribution of surviving phenotypes (see be-

low) in generation t − 1, and �xg is Kronecker’s delta.

A third locus determines whether exploratory individual

learning occurs. Let �(z | x, b) be the individual learning function

for organisms whose initial phenotype is x and whose breadth

of exploration is b (b ≥ 0). For the case of symmetric individual

learning we define

�(z | x, b) = 1

2b + 1
on z = x, x ± 1, . . . , x ± b. (2)

That is, the mature phenotype z may take any one of the 2b + 1 (in-
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teger) values around the initial phenotype x with equal probability

(discrete uniform distribution). When b = 0, there is no explo-

ration. When b > 0, equation (2) permits at least two biologically

relevant interpretations. It may entail active “exploration” of the

“phenotype space.” Alternatively, it may represent passive “er-

ror” associated with innate determination or social learning. On

the latter interpretation, social learning results in the partial adop-

tion of extant phenotypes with mistakes being made in the copying

process.

For asymmetric individual learning we take

�(z | x, b) = 1

2b + 1
on z = x + 1, (x + 1) ± 1, . . . , (x + 1) ± b

(3a)

if x < y,

�(z | x, b) = 1

2b + 1
on z = x, x ± 1, . . . , x ± b (3b)

if x = y, and

�(z | x, b) = 1

2b + 1
on z = x − 1, (x − 1) ±1, . . . , (x − 1) ± b,

(3c)

if x > y. Thus, when the initial phenotype x does not coincide

with the environmental optimum y, asymmetric individual learn-

ing shifts the distribution of the mature phenotypes z one unit

closer to the latter. This implies that some (imperfect) informa-

tion is available to the organism on where the optimum lies relative

to its initial phenotype, which may not always be the case.

Clearly, our model of symmetric individual learning induces

behavioral changes that are not biased toward those that work

better under current environmental conditions and may therefore

deviate from the conventional definition of individual learning.

However, we reiterate here our emphasis on the exploratory nature

of individual learning as perhaps its most important attribute. In

addition, the exploration without bias implied by our model of

symmetric learning corresponds to the limiting case of small bias,

and as such investigating the consequences of this assumption

can serve a useful purpose. We will carefully indicate the sense

in which the term individual learning is being used whenever it is

not clear from the context.

Thus the model assumes three genetic loci. The first locus

defines the innate component g of the initial phenotype, the second

fixes the probability k of social learning, and the third sets the

breadth b of individual learning. The haplotype of an organism

can therefore be represented as g, k, b. We denote by �t (g, k, b)

the frequency of the g, k, b haplotype among the newborns of

generation t.

The life cycle is completed when the surviving organisms

reproduce asexually. At this stage, mutations may occur at the

(first) locus determining the genotypic value (but not at the second

or third loci). We assume stepwise mutation at rate �, so that an

organism whose genotypic value is g will produce three types of

offspring with the genotypic values g − 1, g, and g + 1 in the

proportions �/2, 1 − �, and �/2, respectively.

In what follows, we consider a simplified version of the above

model that limits the number of alleles at the social and individ-

ual learning loci to two each. Specifically, we set k = 0 (no social

learning) or k = 1 (obligate social learning), and b = 0 (no explo-

ration) or b = 1 (minimal exploration). The assumption k = 0 is

equivalent to complete innate determination of the initial pheno-

type, whereas k = 1 entails that the initial phenotype is acquired

by social learning so that the genotypic value is irrelevant. Ac-

cordingly, we have four generic strategies corresponding to four

generic haplotypes: genetic (abbreviated G) when the haplotype is

g, 0, 0; genetic explorer (abbreviated GE) when the haplotype is

g, 0, 1; social learner (abbreviated S) when the haplotype is g, 1, 0;

and social learner explorer (abbreviated SE) when the haplotype is

g, 1, 1. Note also that when b = 1 the individual learning function

(2) or (3) takes each of its three values with equal probability 1/3.

Lastly, at the (first) locus determining the genotypic value,

we distinguish two cases. When there is no mutation, we posit two

alleles with the genotypic values g1 and g2 (where g1 < g2). How-

ever, when there is mutation, we keep track of multiple alleles en-

coding all genotypic values between y1 − w − 1 and y2 + w + 1.

The recursions are given in Appendix 1.

Symmetric Individual Learning
and No Mutation
Some simple cases can be solved analytically. Assume that indi-

vidual learning is symmetric (eq. 2) and there is no mutation at

the locus determining the genotypic value. Consider two cases.

CASE 1: OVERLAPPING ENVIRONMENT

Consider overlapping environments so that some (mature) phe-

notypes are viable in both states y1 and y2 (where y1 < y2). This

requires y2 − w ≤ y1 + w whence w ≥ 1 (because w can take

only integer values). In Appendix 2 we identify an equilibrium at

which the post-selection phenotype distribution (phenotype dis-

tribution, for short) and the frequencies of the eight haplotypes

among newborns (haplotype frequencies, for short) are constant

in time, in spite of the fact that the environment is fluctuating. That

is, �̂ t (z
∗) = �̂(z∗) and �̂t (g, k, b) = �̂(g, k, b) for all t, where the

caret indicates equilibrium, z∗ denotes the surviving phenotype,

g = g1, g2, k = 0, 1, and b = 0, 1. It follows that z∗ is distributed

between y2 − w and y1 + w (in the region of overlap between the

two states), and �̂(z∗) = 0 for z∗ < y2 − w or z∗ > y1 + w.

At this equilibrium, it can further be shown that a haplo-

type either has fitness 1 (no mortality in either environmental

state) or fitness less than 1 (deaths occur in one or both states).

Clearly, the latter haplotypes are selected out, and a monomor-

phism or polymorphism of the former will ensue. Specifically,
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(1) the G strategy haplotype g, 0, 0 is present at equilibrium if

y2 − w ≤ g ≤ y1 + w; (2) the GE strategy haplotype g, 0, 1 is

present if y2 − w + 1 ≤ g ≤ y1 + w − 1; (3) the S strategy hap-

lotype g, 1, 0 is always present; and (4) the SE strategy haplotype

g, 1, 1 is always absent. For each of the four strategies, g is either

g1 or g2. It is important to note that the haplotype frequencies

are constant at equilibrium, but the values will depend on the ini-

tial conditions because all persisting haplotypes have the same

fitness. In other words, each such equilibrium is neutrally stable.

Extensive numerical work (see below) suggests convergence to

this class of equilibria without exception.

The predictions (1)–(4) of the above paragraph are in accord

with intuition. Here we briefly explain why the S strategy suc-

ceeds whereas the SE strategy fails. Recall that both strategies

acquire their initial phenotype by copying a member of the previ-

ous generation in proportion to �̂(z∗). In the case of the S strategy,

which depends only social learning, the mature phenotypes will

all lie in the region of overlap between the two states, y2 − w and

y1 + w. Hence, the S strategy does not suffer any mortality and

has fitness 1 in both states. On the other hand, the SE strategy uses

symmetric individual learning (as defined by eq. 2 with b = 1) in

addition to social learning. Because such exploration causes the

phenotype distribution to spread out, the presence of the SE strat-

egy ensures the occurrence of the phenotypes z∗ = y2 − w and

z∗ = y1 + w at equilibrium. Thus, the initial phenotypes y2 − w

and y1 + w, and consequently the mature phenotypes y2 − w − 1

and y1 + w + 1, are among those produced by the SE strategists

in the next generation. The latter are inviable in environmental

states y2 and y1, respectively, so that the SE strategy has fitness

less than 1 in either state.

CASE 2: NONOVERLAPPING CONTIGUOUS

ENVIRONMENT

With nonoverlapping but contiguous environments, we have

y1 + w + 1 = y2 − w or equivalently y2 − y1 = 2w + 1 (the up-

per bound of state y1 is smaller than the lower bound of state y2,

but the distance between the two is 1). In this case, the G and

S strategies, which are incapable of exploration (b = 0), cannot

survive a change of state and are selected out. By contrast, the SE

strategy (b = 1) has positive viability in both states, and so does

the GE strategy (b = 1) provided g = y1 + w or g = y2 − w. This

suggests the existence of an equilibrium where the SE strategy,

and possibly also the GE strategy, is present.

The following is a description of the features of such an equi-

librium; analytical details are given in Appendix 3. First assume

the GE strategy is absent, for instance because g1 < y1 + w <

y2 − w < g2. Then the two haplotypes g1, 1, 1 and g2, 1, 1 of the

SE strategy clearly have the same fitness, whence their frequencies

are constant. In environmental state y1, the surviving phenotypes

z∗ are distributed between y1 − w and y1 + w. Importantly, the

phenotype z∗ = y1 + w is always present (see below) among the

surviving adults, so the initial phenotype x = y1 + w and conse-

quently the mature phenotype z = y1 + w + 1 = y2 − w neces-

sarily occur in the next generation (specifically, 1/3 of those with

initial phenotype x = y1 + w). Hence, when the state changes

from y1 to y2, some SE strategists (in fact, those of the ma-

ture phenotype z = y1 + w + 1 = y2 − w) are able to survive the

new selection regime. That is, the phenotype distribution in the

first generation after the environmental change is concentrated at

z∗ = y2 − w.

Subsequently, if the environment remains in state y2, the

phenotype distribution will spread out in the interval between

z∗ = y2 − w and z∗ = y2 + w. Table 1a and 1b gives the equi-

librium distributions of the post-selection phenotypes �̂ t (z
∗) in

generations 1 through 5 for the cases in which the environmental

tolerance is w = 1 and w ≥ 2, respectively. Clearly, a mirror-

image pattern is repeated when the environment reverts to state

y1, so that �̂ t (z
∗) is cyclic of period 2l in t.

Let us now investigate the fate of the GE strategy haplotypes

g1, 0, 1 and g2, 0, 1 that are introduced at low frequencies. Here,

we present the argument for the special case of w ≥ 1, l = 1, g1 =
y1 + w, and g2 = y2. Note that the genotypic value g1 coincides

Table 1. Equilibrium distributions of the postselection phenotypes

in a contiguous environment with symmetric learning and no mu-

tation. Relative magnitudes rather than probabilities are reported

for generations 1 through 5 for the cases in which the environ-

mental tolerance is (a) w =1 and (b) w ≥2. To obtain the pheno-

type distribution, �̂ t(z
∗), each entry should be divided by the row

sum, e.g., �̂ 3(y2−w)= 2
5 . (Symmetric learning entails exploration

around the initial phenotype that is not biased toward the optimal

phenotype.)

(a)

Phenotype distribution
t

y2−1 y2 y2+1 sum

1 1 1
2 1 1 2
3 2 2 1 5
4 4 5 3 12
5 9 12 8 29

(b)

Phenotype distribution
t

y2−w y2−w+1 y2−w+2 . . . . . . sum

1 1 1
2 1 1 2
3 2 2 1 5
4 4 5 3 1 13
5 9 12 9 4 1 35
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with the upper bound of state y1, whereas g2 lies at the optimum of

state y2 (see above). The general case is analyzed in Appendix 3.

Write wt (g, k, b | yi ) for the fitness of haplotype g, k, b in

environmental state yi in the tth generation after a change of state

(see Appendix eq. A3 for a formal definition). Because the envi-

ronment changes every generation (l = 1), we need to compute

the fitnesses for t = 1 only. The fitness of the SE strategist is,

w1(g, 1, 1 | y1) = 1

3
� 0(y2 − w) (4a)

w1(g, 1, 1 | y2) = 1

3
� 0(y1 + w), (4b)

in each of the two states y1 and y2 (for both g1 = y1 + w, and g2 =
y2). Here, �0(.) denotes the postselection phenotypic distribution

in the generation before the change of state, and the factor 1/3

derives from symmetric individual learning (eq. 2 with b = 1).

Because the GE strategy is rare, Table 1a and 1b assures us that 0 <

�0(y2 − w) ≤ 1 and 0 < �0(y1 + w) ≤ 1. Hence, the product of

the fitnesses over one environmental cycle (2l = 2 generations) is

positive and bounded above by

w̃SE(g, 1, 1) ≤ 1

3
· 1

3
= 1

9
. (5)

On the other hand, the fitnesses of the two GE strategy haplotypes

in the two states are

w1(g1, 0, 1 | y1) = 2

3
, (6a)

w1(g1, 0, 1 | y2) = 1

3
, (6b)

w1(g2, 0, 1 | y1) = 0, (6c)

w1(g2, 0, 1 | y2) = 1. (6d)

Hence, the products of the fitnesses over one environmental period

are

w̃GE(g1, 0, 1) = 2

3
· 1

3
= 2

9
(7a)

and

w̃GE(g2, 0, 1) = 0 · 1 = 0 (7b)

for the two haplotypes.

Thus, in this special case, the GE strategy haplotype g1, 0, 1

will invade whereas haplotype g2, 0, 1 will immediately disappear.

Moreover, a monomorphic equilibrium in the haplotype g1, 0, 1

will eventually be reached, replacing the polymorphism in the SE

strategy haplotypes.

More generally, as we show in Appendix 3, fixation of the

SE strategists is unstable to invasion by the GE strategists of

the appropriate haplotype if the interval between environmen-

tal changes l ≤ 3, and it is stable if l ≥ 5. When l = 4, analysis

is uninformative, because the product of the fitnesses over one

environmental cycle of length 2l is the same for both strategies.

However, numerical work (see below, in particular Table 2c) sug-

gests stability in this case. Numerical work also suggests that the

GE strategists will be fixed when l = 2.

To reiterate, the GE strategy with an innate component can

invade when the environment is changeable (l ≤ 3, and more-

over go to fixation when l ≤ 2), whereas the SE strategy that

depends partly on social learning is uninvadable in a more stable

environment (l ≥ 4). Although this pattern is at first glance an

exact reversal of what might be expected on the consensus view,

we will argue later (after reporting numerical results concerning

the effect of mutation) that it is in fact consistent. Here, we briefly

Table 2. Equilibrium properties for four distinct environment

(y) configurations. Opt: g values are identical to the environ-

mental optima (i.e., g1=y1 and g2=y2). Bor: g values coincide

with the environmental borders (i.e., g1=y1+w and g2=y2−w).

See the header of each table for specific g values. Cycle: The

haplotype/phenotype distribution is cyclic. Const: The haplo-

type/phenotype distribution is constant. The gray cells represent

the surviving strategies in each scenario. In cases in which a sur-

viving strategy also includes exploration (i.e., GE or SE), the cell is

also marked with hatching for clarity.

Continued
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Table 2. Continued.

note that the key to reconciliation is to equate the G strategy with

baseline innate determination. Then, GE represents an “evolved”

strategy that has acquired the capacity for symmetric individual

learning (i.e., exploration), whereas SE represents a mixed sym-

metric individual and social learning strategy in which the innate

component has been suppressed.

Asymmetric Individual Learning
and No Mutation in a Contiguous
Environment
The assumption of asymmetric individual learning renders anal-

ysis more difficult. Suppose the initial phenotype x has a lower

value than the environmental optimum y (x < y). Then, equation

(3a) entails that, for a nonexplorer (b = 0), the mature phenotype

will be z = x + 1. On the other hand, the mature phenotype of an

explorer (b = 1) whose initial phenotype is x will be distributed

over z = x, x + 1, and x + 2 with equal probability of 1/3.

The equilibrium at which the SE strategy is fixed is of special

interest, because at this equilibrium both social and (biased as

well as exploratory) individual learning abilities are present in the

same organism, allowing culture to change cumulatively. Here

we briefly report results regarding the stability of this equilibrium

to invasion by the S strategy. As shown in Appendix 4, when

the environmental tolerance is w = 1 and the interval between

changes of state is l = 1, the product of the fitnesses over one

cycle of duration 2l = 2 is greater for the rare S strategists than

for the dominant SE strategists. Hence in this case the S strategy

invades, and goes all the way to fixation as shown in Table 2c. On

the other hand, if we assume w = 1 and l ≥ 2, the product of the

fitnesses is the same for both strategies. Nevertheless, numerical

work (Table 2c) suggests that the S strategists will be selected out,

although slowly.

In addition, when the environmental tolerance is w = 2, the

SE strategy is stable to invasion by the S strategy provided the in-

terval l is sufficiently long. Appendix 4 gives a sketch of the proof.

Numerical Work
As demonstrated in the previous sections, there are several fac-

tors that affect the dynamics and equilibria in our model. We have

shown that the environmental periodicity 2l and the magnitude of

environmental changes (e.g., overlapping versus contiguous envi-

ronmental states) markedly affect the evolution of individual and

social learning. In this section we explore numerically the equi-

libria of the haplotype frequencies and the phenotype distribution

in various environments and for a range of parameter values. We

validate the analytical findings obtained above and examine the

equilibria under more complicated scenarios (e.g., when the geno-

typic value g can mutate) where a formal mathematical analysis

has not been feasible.

The results presented below have all been obtained according

to the following protocol. Initial frequencies of all possible hap-

lotypes were set equal. Initial phenotype frequencies were uni-

formly distributed across all viable phenotypes in the pre-change

environment. The recursion equations (see Appendix 1) were then

iterated until equilibrium was reached. Specifically, simulations

were terminated when the difference in haplotype (and pheno-

type) frequencies between two adjacent cycles (each of length

2l), summed over all haplotypes (and phenotypes) and over all

generations in the cycle, fell below 10−7.

Once equilibrium was reached, we examined the surviv-

ing haplotype and phenotype frequencies. Haplotypes with mean

frequency lower than 10−4 were considered absent. Additional
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simulations have confirmed that these low-frequency haplotypes

are indeed subject to weak selection and do eventually disappear.

We also examined the haplotype and phenotype distributions to

determine whether the equilibrium frequencies are constant or

experience a cycle.

The results obtained for a large set of simulation runs are

summarized in Table 2a, 2b, 2c and 2d; we have considered four

distinct environments, termed Wide-Overlap, Narrow-Overlap,

Contiguous, and Distant, which are characterized by the distance

between the two environmental optima, y1 and y2 (see also the

headers of Table 2a, 2b, 2c and 2d). The environmental tolerance,

w, was set to 1 in all simulations. For each such environment,

we examined the effects of the interval between changes of state

(l), different genotypic values (g1 and g2), mutation rate (�), and

symmetric versus asymmetric individual learning, as described

in the Section “The Three-Locus Model.” In particular, all val-

ues of l between 1 and 25, and selected values of l up to 1000

were considered. It is evident (see for example Table 2b) that all

of these parameters can have a marked effect on the resulting

equilibria.

Table 2a and 2b records the equilibria when the environmen-

tal states overlap (wide-overlap and narrow-overlap, respectively)

and confirm the analytical results obtained in the Section “Sym-

metric Individual Learning and No Mutation” for the case of sym-

metric learning and no mutation. Thus, the G strategy haplotype is

present at equilibrium if g is located in the overlapping region; see

for example Table 2b, and compare the case where the g values are

equal to the environmental optima (g1 = 500, g2 = 502) with the

case where the g values coincide with the environmental borders

(g1 = g2 = 501). The GE strategy haplotype is not present, as the

condition for this to occur (i.e., y2 − w + 1 ≤ g ≤ y1 + w − 1)

is not met by our choice of parameters. The S strategy haplotype

is always present, and finally the SE strategy haplotype is always

absent. Furthermore, as predicted by our analysis, the haplotype

frequencies and the phenotype distribution are both constant.

However, it appears that the presence of mutation or the use

of asymmetric rather than symmetric learning significantly influ-

ences the equilibria. Specifically, when the genotypic values g can

mutate, the G strategists are selected out. This is in accord with

intuition as a mutation in a viable g allele may make it nonvi-

able; consequently when the mutations accumulate, the fitness of

G strategists will eventually fall below 1. (In an overlapping envi-

ronment, there is selection against the mutable G strategists, un-

der both symmetric and asymmetric learning assumptions.) Simi-

larly, asymmetric learning sometimes results in the survival of GE

strategists that were absent from the equilibrium in the symmetric

learning case.

Table 2c validates our analysis presented in Sections “Sym-

metric Individual Learning and No Mutation” and “Asymmetric

Individual Learning and No Mutation in a Contiguous Environ-

ment” for the contiguous environment without mutation. The ef-

fect of l, the interval between changes of state, is evident in the

symmetric learning case. Although the GE strategy spreads in

more changeable environments (small l), the SE strategy spreads

and eventually fixes when the environment becomes more stable

(l ≥ 4). We also see that when organisms apply asymmetric indi-

vidual learning, an equilibrium at which the SE strategy is fixed

may arise for l ≥ 2.

The results recorded in Table 2c for a contiguous environment

demonstrate that the presence of mutation, � > 0, and the interval

between changes of state, l, have major effects on the surviving

haplotype frequencies. Apparently, with symmetric learning in

a contiguous environment, and when mutations in the g alleles

are permitted, three markedly different regimes can be observed

as a function of the level of environmental stability. When l is

small (low stability), only GE (genetic explorer) strategists sur-

vive. For intermediate l values, only SE (social learner explorer)

strategists survive (see Table 2c for symmetric learning, mutation,

and 4 ≤ l ≤ 11). And finally when l is large (relatively stable en-

vironment), only G (genetic) strategists survive. Certain l values

that correspond to transition values from one regime to another

result in a polymorphism of two strategies. Figure 1 shows the

effect of both the mutation rate, � (0 ≤ � ≤ 0.5), and the inter-

val between changes of state, l (1 ≤ l ≤ 50). Note that a transi-

tional polymorphism is observed in most cases (i.e., for most �

values) and that the minimum l value above which the G strate-

gists outperform the SE strategists decreases as the mutation rate

increases.

That transitions from GE strategists to SE strategists and then

to G strategists occur as l increases is consistent with the consen-

sus view. Specifically, if we regard the G strategy as the baseline

innate determination, then GE represents an “evolved” strategy

involving exploratory individual learning, and SE represents a

mixed individual and social learning strategy in which the innate

component has been suppressed (see also Section 3 “Symmetric

Individual Learning and No Mutation”). Thus, these results cor-

respond closely to those of Wakano et al. (2004) and Aoki et al.

(2005). We will address the differences from Boyd and Richerson

(1985) in the Discussion.

Finally, Table 2d summarizes the numerical results for the

distant environment (i.e., y2 − y1 > 2w + 1). In some cases when

the distance between the two environmental states is too large,

there are no haplotypes that can survive an environmental change

and the entire population goes extinct.

In addition to the set of surviving haplotypes, equilibria may

also differ in the way the haplotype distribution changes over

time. In many cases, the resulting equilibria are cyclic (of period

2l), tracking the environmental cycle. A typical case is portrayed

in Figure 2; in the generation immediately following the change

of state only one phenotype is present, producing a phenotype
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Figure 1. Surviving haplotype classes as a function of the interval between changes of state and the mutation rate in a contiguous

environment (y1 = 500, y2 = 503, w = 1), with g values identical to the environmental optima (i.e., g1 = y1 and g2 = y2), and symmetric

learning. (Symmetric learning entails exploration around the initial phenotype that is not biased toward to optimal phenotype.)

distribution with a single peak. The phenotype distribution be-

comes broader in subsequent generations until the next environ-

mental change occurs. Figure 3 further illustrates a scenario in

which both the phenotype and haplotype distributions are cyclic.

(See also Table 1a and 1b.)

Discussion
We have described a model in which an organism’s phenotype,

represented by an integer, is initially determined innately (by its

genotypic value) or by social learning (copying a phenotype from
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Figure 2. The phenotype distribution at equilibrium in a contiguous environment (y1 = 500, y2 = 503, w = 1), with l = 20, symmetric

learning, no mutation, and innate g values that coincide with the environment borders (i.e., g1 = 501 and g2 = 502). The phenotype

distribution over all the phenotypes that exist at the equilibrium is illustrated for each generation within the first cycle after equilibrium

was reached (generations 121–160 in this case).

the parental generation), and then may or may not be modified

by individual learning to yield its mature phenotype. Here, indi-

vidual learning is defined to be exploration, which can be either

symmetric or asymmetric around the initial phenotype (unbiased

or biased, respectively, toward the optimal phenotype). The envi-

ronment alternates periodically between two states measured on

the same scale as the phenotype, and the surviving mature pheno-

types in each state are determined by a rectangular fitness function.

The two environmental states may overlap, in which case the same

phenotype can survive in both states, or they may be nonoverlap-

ping. This model is novel in that, at least in the symmetric learning
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Figure 3. The phenotype distribution and the haplotype distribution in a contiguous environment with l = 20, symmetric learning, � =

0.02, and innate g values identical to the environmental optima (i.e., g1 = 500 and g2 = 503). (A) The phenotype distribution over all the

phenotypes that exist at the equilibrium is illustrated for each generation in the first cycle after equilibrium was reached (generations

201–240 in this case). (B) The haplotype distribution of pure innate individuals (i.e., haplotypes of the form g,0,0) for different g values.

The distribution is illustrated as a function of the generation for all the generations within the first cycle after equilibrium was reached.

The value of the specific g allele is next to the appropriate curve. All other haplotypes are absent from this equilibrium.

situation, social and individual learning can evolve independently

of each other.

We have analytically and numerically investigated the evo-

lutionary fate of four directly competing strategies, which is also

a novel approach. A major result is that a joint social and ex-

ploratory individual learning strategy is likely to spread when the

environmental states do not overlap. In particular, when the envi-

ronmental states are contiguous and mutation is allowed among

EVOLUTION MARCH 2008 595



ELHANAN BORENSTEIN ET AL.

the genotypic values, this strategy will spread in moderately sta-

ble environments when individual learning is symmetric, and in

highly stable environments when it is asymmetric. On the other

hand, natural selection often favors a social learning strategy with-

out exploration when the environmental states overlap.

The extensive numerical work summarized in Table 2a, 2b,

2c, and 2d and in Figures 1–3 reveals a bewildering variety of pos-

sible outcomes, in addition to and including those mentioned in the

above paragraph. In the previous sections we have provided ana-

lytic or intuitive justification for some of these. Here, we focus on

the several new results of greatest theoretical significance for our

understanding of the evolution of learning in animals and humans.

First, we address in more detail the question of when se-

lection favors an organism capable of both social and exploratory

individual learning, which is a prerequisite for cumulative culture.

In other words, we wish to identify the conditions under which

the SE strategy will be fixed, or alternatively exist at polymorphic

equilibrium. Recall that SE entails the acquisition of the initial

phenotype by social learning, which is followed by exploratory

individual learning to yield the mature phenotype. Alternatively,

SE can be regarded as a social learning strategy that is prone to

copying errors.

Table 2a and 2b shows that in the overlapping environment

(see illustrations at the top of the tables) SE is always selected

out whereas S is often favored (except when a genotypic value

coincides with an environmental border). However, when indi-

vidual learning is asymmetric, we have already noted that the S

strategy can be regarded as comprising both individual and so-

cial learning, because for an organism adopting this strategy the

mature phenotype lies closer to the environmental optimum than

the initial phenotype. On this interpretation, selection is favoring

an organism capable of both social and biased individual learning

(but lacking the ability to explore). There is unfortunately some

ambiguity in how individual learning might be defined.

By contrast, Table 2c shows that SE is often fixed in the

contiguous environment. In fact, when the genotypic values are

not mutable, S is always lost (barring one exceptional case), and

SE is fixed except when the environment is highly unstable (or

when learning is asymmetric and a genotypic value coincides

with the border of an environmental state). When mutation is

introduced, the same table shows spread of SE in moderately

stable environments when individual learning is symmetric, and

in highly stable environments when it is asymmetric. On the al-

ternative interpretation of SE as an error-prone social learning

strategy—S entails faithful copying—these results suggest that

mistakes made in the copying process may contribute to survival

in the contiguous environment.

For completeness, we note from Table 2d that in the dis-

tant environment the population goes extinct most of the time if

learning is symmetric, and SE can never evolve. With asymmetric

learning we observe a pattern of dependence on the environmental

stability similar to the case of the contiguous environment.

In addition, individual learning in our model does not entail

the discovery of new behaviors, but only the “rediscovery” of the

same behaviors corresponding to phenotypes lying in the range

between y1 − w − 1 and y2 + w + 1. This is an artifact of our as-

sumption of two states between which the environment fluctuates.

If instead we were to posit an infinite number of states (Feldman

et al. 1996; Wakano et al. 2004; Aoki et al. 2005) on the space of

integers, with environmental changes being described by, say, a

random walk on this space, some behaviors acquired by individ-

ual learning would be truly novel. It should also be interesting to

adopt a multi-dimensional phenotype space and to investigate the

effect of the number of dimensions on the evolution of learning.

Second, we discuss how our findings relate to the prior study

by Boyd and Richerson (1985), who compared the relative advan-

tages of genetic and cultural transmission based on their guided

variation model. These authors compute the geometric mean fit-

nesses of two asexually reproducing populations in a stochasti-

cally changing environment. In the first population, the organ-

isms use a strategy of innate determination combined with asym-

metric individual learning—the “genetic strategy.” In the sec-

ond, they use a joint social and asymmetric individual learning

strategy—the “cultural strategy.” Boyd and Richerson (1985, Figs.

4.11, 4.12, and 4.13) find that low environmental autocorrela-

tions (an unstable environment) favor the genetic strategists—

the geometric mean fitness of the first population is higher—

whereas intermediate-to-high autocorrelations favor the cultural

strategists. Furthermore, at very high autocorrelations, the genetic

strategists are again favored. These results are remarkable in that

they apparently contradict the consensus view—individual learn-

ing, social learning, and innate determination of behavior are fa-

vored by natural selection when environmental changes occur at

short, intermediate, and long intervals, respectively—and suggest

that it may be too simplistic.

However, we have been unable to replicate Boyd and Richer-

son’s result. Assuming asymmetric individual learning, the equiv-

alent observation within the framework of our model would be

that the GE (genetic explorer) strategy, the SE (social learner ex-

plorer) strategy, and—once again—the GE strategy are favored

by natural selection when environmental changes occur at short,

intermediate-to-long, and very long intervals, respectively. Alter-

natively, the sequence might be G (genetic), S (social learner), and

back to G. It can be seen from Table 2a, 2b, 2c, and 2d that this

pattern is never realized.

Additional simulations were conducted in which we fixed the

breadth of individual learning, so that the number of competing

generic strategies was two rather than four—G against S when

b = 0, and GE against SE when b = 1. Note that these special as-

sumptions more closely match those made by Boyd and Richerson.
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In the case of b = 1, we did observe a transition from GE to SE as

the interval between environmental changes increased, but never

a transition back to GE, within the range of values considered

(1 ≤ l ≤ 1000). Clearly, we cannot rule out the possibility that

the GE strategy would be favored again at some higher value of l

(see below).

Nevertheless, we believe that our inability to replicate Boyd

and Richerson’s result stems from the numerous structural dif-

ferences between their model and ours. For example, the models

differ in whether environmental fluctuations are stochastic or pe-

riodic, the fitness function is Gaussian or rectangular, etc.. But

these disparities are relatively minor. What really distinguishes

our model is the co-occurrence in the same population of various

strategies, which compete directly with each other in a frequency-

dependent manner. By contrast, Boyd and Richerson assume that

the genetic and cultural strategies are evolving independently in

two separate populations. Although this difference may contribute

to the discrepancy between their results and ours, we have no

definitive explanation.

Third, we have already noted that a pattern of dependence on

the environmental stability that corresponds closely to the con-

sensus view is observed in a contiguous environment with sym-

metric individual learning and mutation among the genotypic val-

ues (Table 2c). Namely, the GE strategy, the SE strategy, and the

G strategy are favored by natural selection when environmental

changes occur at short, intermediate, and long intervals, respec-

tively. Here, it is possible to regard GE as an “evolved” strategy

in which the mature phenotype is acquired by individual learning.

On the other hand, the initial phenotype is fixed genetically, which

constrains the range of mature phenotypes, so that GE is clearly

not a “blank slate” strategy.

But Table 2a, 2b, 2c, and 2d shows that this combination

of conditions—contiguous environment, symmetric individual

learning, and mutable genotypic values—is the only one that pro-

duces this pattern (consistent with the consensus view). For ex-

ample, just changing the environment from contiguous to distant

leads to the highly disparate prediction that the GE strategy is

fixed for any value of l > 1, with extinction occurring if l = 1

(Table 2d). When the environment is overlapping, the results are

again quite different (Table 2a and 2b). In this case, selection of-

ten favors the S strategy (social learning without exploration). In

particular, with mutable genotypic values, the S strategy is fixed

whatever the interval between environmental changes, and regard-

less of whether individual learning is symmetric or asymmetric.

As mentioned above, we did not consider values of the in-

terval between environmental changes, l, greater than 1000 in

our numerical work. On the technical side, this choice was man-

dated by the prohibitively long computing time required to achieve

convergence to equilibrium. In some cases, equilibrium had still

not been reached after 1,000,000 generations. On the theoretical

side, it is partially justified by the analytical work, which shows

that the transitions, if any, between the qualitatively different equi-

libria mostly occur at relatively small values of l. For example, we

proved in Appendix 3 that, in a nonoverlapping contiguous envi-

ronment with symmetric learning but no mutation, the threshold

between a stable monomorphism of the SE strategy and invasion

by the GE strategy is l = 4.

Finally, we note that incorporation of exogenous costs of

learning, such as might be incurred in developing and maintaining

a nervous system supportive of learning, may require us to revise

our conclusions (Aoki et al. 2005). By way of illustration, let

us briefly reexamine the case of the nonoverlapping contiguous

environment with symmetric learning and no mutation. In the

absence of exogenous costs of learning, our analysis showed that

the SE strategy can resist invasion by the GE strategy if l ≥ 5. In

particular, if l = 5 and w ≥ 1, the product of the fitnesses over

one period of duration 2l = 10 is 1
36 for SE (see (A24c), provided

GE is rare) and 25

310 for GE (see (A22), provided the genotypic

value coincides with an environmental state border). Now, if the

exogenous cost of social learning is d per generation, the above

product of the fitnesses for SE must be multiplied by (1 − d)10. On

the other hand, the exogenous cost of individual learning, which is

shared by both strategies, can be neglected. Hence, the condition

for the GE strategy to invade given l = 5 and w ≥ 1 becomes

1

36
(1 − d)10 <

25

310
, (8)

or equivalently d > 1 − √
2/30.4 ≈ 0.089.
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Appendix 1
THE THREE-LOCUS MODEL RECURSIONS

Here we give the recursions in their most general form. Some

simplifying assumptions are made in the text and following ap-

pendices.

Let � t−1(z∗) be the distribution of surviving phenotypes z∗

in generation t − 1. As defined by equation (1), the distribution

of initial phenotypes x among g, k organisms in generation t is

� t (x | g, k) = (1 − k)�xg + k� t−1(x). (A1)

Next let �(z | x, b) be the individual learning function for b organ-

isms whose initial phenotype is x. Then, the distribution of mature

phenotypes z among g, k, b organisms in generation t is

�t (z | g, k, b) =
∑

x

�(z | x, b)� t (x | g, k). (A2)

The fitness of a g, k, b organism in environmental state y in gen-

eration t is

wt (g, k, b | y) =
y+w∑

z=y−w

�t (z | g, k, b). (A3)

Hence, the recursion in the frequency �t (g, k, b) of haplotype

g, k, b in environmental state y is

�t+1(g, k, b) = wt (g, k, b | y)�t (g, k, b)/w̄t , (A4)

where

w̄t =
∑

g

∑
k

∑
b

wt (g, k, b | y)�t (g, k, b) (A5)

is the mean fitness in environmental state y in generation t. Finally,

the distribution of surviving phenotypes z∗ in environmental state

y in generation t can be written as

� t (z
∗) =

∑
g

∑
k

∑
b

�t (z
∗ | g, k, b)�t (g, k, b)/w̄t . (A6)

if |z∗ − y| ≤ w, and 0 otherwise.

Appendix 2
EQUILIBRIUM IN AN OVERLAPPING ENVIRONMENT

WITH SYMMETRIC LEARNING

Let there be two alleles at each locus with g = g1 or g2 (where

g1 < g2), k = 0 or 1, and b = 0 or 1. Individual learning is

symmetric (eq. 2). The competing generic strategies are G (ge-

netic, innate; k = 0, b = 0), GE (genetic explorer; k = 0, b = 1),

S (social learner; k = 1, b = 0), and SE (social learner explorer;

k = 1, b = 1). Assume overlapping environments so that some

mature phenotypes are viable in both states y1 and y2 (where

y1 < y2), i.e., y2 − w ≤ y1 + w.

Using Kronecker’s �, the individual learning functions for the

two alleles b = 0 and 1 can be expressed as

�(z | x, 0) = �zx, �(z | x, 1) = 1

3
(�z,x−1 + �zx + �z,x+1), (A7)

respectively.

To prove the existence of an equilibrium (denoted by the

caret above the symbol) in which the haplotype frequencies and

phenotype distribution are constant in time, we set

�̂(z∗) =
y1+w∑

	=y2−w


	�z∗	, where
y1+w∑

	=y2−w


	 = 1 (A8)

and demonstrate consistency. Substituting (A8) in (A1) gives

�̂ (x | g, 0) = �xg, �̂ (x | g, 1) =
y1+w∑

	=y2−w


	�x	 . (A9)
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Hence, from (A2)

�̂(z | g, 0, 0) =
∑

x

�(z | x, 0)�̂ (x | g, 0) =
∑

x

�zx�xg = �zg, (A10a)

�̂(z | g, 0, 1) =
∑

x

�(z | x, 1)�̂ (x | g, 0)

= 1

3

∑
x

(�z,x−1 + �zx + �z,x+1)�xg

= 1

3
(�z,g−1 + �zg + �z,g+1), (A10b)

�̂(z | g, 1, 0) =
∑

x

�(z | x, 0)�̂ (x | g, 1) =
∑

x

�zx

y1+w∑
	=y2−w


	�x	

=
y1+w∑

	=y2−w


	

∑
x

�zx�x	

=
y1+w∑

	=y2−w


	�z	 = �̂(z), (A10c)

�̂(z | g, 1, 1) =
∑

x

�(z | x, 1)�̂ (x | g, 1)

= 1

3

∑
x

(�z,x−1 + �zx + �z,x+1)
y1+w∑

	=y2−w


	�x	

= 1

3

y1+w∑
	=y2−w


	(�z,	−1 + �z	 + �z,	+1). (A10d)

Thus from (A3), (A10a), and (A10b) the fitnesses of the G and

GE strategists are

ŵ(g, 0, 0 | y) =
y+w∑

z=y−w

�̂(z | g, 0, 0) =
y+w∑

z=y−w

�zg

= 1 if |g − y| ≤ w, 0 otherwise (A11a)

ŵ(g, 0, 1 | y) =
y+w∑

z=y−w

�̂(z | g, 0, 1)

= 1

3

(
y+w∑

z=y−w

�z,g−1 +
y+w∑

z=y−w

�zg +
y+w∑

z=y−w

�z,g+1

)

= 1 if |g − y| ≤ w − 1,
2

3
if |g − y| = w,

= 1

3
if |g − y| = w + 1, 0 otherwise. (A11b)

For the S strategists (A3) and (A10c) give

ŵ(g, 1, 0 | y) =
y+w∑

z=y−w

�̂(z | g, 1, 0) =
y+w∑

z=y−w

y1+w∑
	=y2−w


	�z	

=
y1+w∑

	=y2−w


	

y+w∑
z=y−w

�z	 .

Because y1 − w < y2 − w < y1 + w < y2 + w, we have∑y+w
z=y−w �z	 = 1 for each 	. Hence

ŵ(g, 1, 0 | y) =
y1+w∑

	=y2−w


	 = 1. (A11c)

Similarly, for the SE strategists (A3) and (A10d) give

ŵ(g,1,1 | y) =
y+w∑

z=y−w

�̂(z | g,1,1)

=
y1+w∑

	=y2−w


	
1

3

(
y+w∑

z=y−w

�z,	−1+
y+w∑

z=y−w

�z	+
y+w∑

z=y−w

�z,	+1

)
.

Noting that
∑y2+w

z=y2−w �z,	−1 = 0 when 	 = y2 − w and∑y1+w
z=y1−w �z,	+1 = 0 when 	 = y1 + w, regardless of the

value of g, we infer

ŵ(g, 1, 1 | y) <

y1+w∑
	=y2−w


	 = 1. (A11d)

(Note that the functions � , � , and w do not depend on t.)

Haplotypes with fitness 1 in both states will persist, whereas

haplotypes of lower fitness will be selected out. Hence, (1) the G

strategy haplotype g, 0, 0 persists if |g − y1| ≤ w and |g − y2| ≤
w, i.e., if y2 − w ≤ g ≤ y1 + w, but is otherwise selected out;

(2) the GE strategy haplotype g, 0, 1 persists if |g − y1| ≤ w − 1

and |g − y2| ≤ w − 1, i.e., if y2 − w + 1 ≤ g ≤ y1 + w − 1, but

is otherwise selected out; (3) the S strategy haplotypes g1, 1, 0 and

g2, 1, 0 persist; (4) the SE strategy haplotypes g1, 1, 1 and g2, 1, 1

are selected out.

Thus, in the least restrictive case (i.e., g < y2 − w or y1 +
w < g for g = g1, g2), only the two S haplotypes g1, 1, 0 and

g2, 1, 0 exist at equilibrium. When the conditions on g are made

more stringent, some or all of the G or GE haplotypes may coexist.

Note that the frequencies of persisting haplotypes will be constant

at equilibrium, but the values depend on the initial conditions.

Lastly, we show the existence of an equilibrium phenotypic

distribution that is constant, �̂(z∗). In other words, we show

that � t−1(z∗) = �̂(z∗) implies � t (z
∗) = �̂(z∗). The mean fitness

ˆ̄w = 1 because each persisting haplotype has a fitness of 1, so

we need to only evaluate the numerator of (A6). There are three

cases. First suppose �t (gi , 1, 0) = �̂(gi , 1, 0) for i = 1, 2, where

�̂(g1, 1, 0) + �̂(g2, 1, 0) = 1. Then, substituting �t (z | gi , 1, 0) =
�̂(z) for i = 1, 2 (eq. A10c) in (A6), the distribution of surviving

phenotypes in generation t will be

� t (z
∗) = �̂(z∗)�̂(g1, 1, 0) + �̂(z∗)�̂(g2, 1, 0) = �̂(z∗), (A12a)

and we are done. Second, if �̂(g1, 1, 0) + �̂(g2, 1, 0) +
�̂(g1, 0, 0) + �̂(g2, 0, 0) = 1, then
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�̂(z∗) = �̂(z∗)�̂(g1, 1, 0) + �̂(z∗)�̂(g2, 1, 0)

+ �z∗g1 �̂(g1, 0, 0) + �z∗g2 �̂(g2, 0, 0),

whence

�̂(z∗) = �z∗g1 �̂(g1, 0, 0) + �z∗g2 �̂(g2, 0, 0)

�̂(g1, 0, 0) + �̂(g2, 0, 0)
. (A12b)

Third, if �̂(g1, 1, 0) + �̂(g2, 1, 0) + �̂(g1, 0, 0) + �̂(g2, 0, 0) +
�̂(g1, 0, 1) + �̂(g2, 0, 1) = 1, then

�̂(z∗)(1 − �̂(g1, 1, 0) − �̂(g2, 1, 0))

= �z∗g1 �̂(g1, 0, 0) + �z∗g2 �̂(g2, 0, 0)

+1

3

(
�z∗,g1−1 + �z∗g1 + �z∗,g1+1

)
�̂(g1, 0, 1)

+1

3

(
�z∗,g2−1 + �z∗g2 + �z∗,g2+1

)
�̂(g2, 0, 1). (A12c)

Appendix 3
EQUILIBRIUM IN A CONTIGUOUS ENVIRONMENT

WITH SYMMETRIC LEARNING

We retain all assumptions made in Appendix 2, except that the en-

vironment is now nonoverlapping contiguous, i.e., y1 + w + 1 =
y2 − w. Consider an equilibrium at which only the SE strategists

are present. Then clearly the two haplotypes g1, 1, 1 and g2, 1, 1

have the same fitness, whence their frequencies are constant and

can be written as �̂(g1, 1, 1) and �̂(g2, 1, 1), respectively.

Substitution of (2) and (A1) in (A2) yields

�̂t (z | g, k, b) = (1 − k)�(z | g, b) + k
1

2b + 1

z+b∑
x=z−b

�̂ t−1(x),

(A13)

which simplifies to

�̂t (z | g, 1, 1) = 1

3

z+1∑
x=z−1

�̂ t−1(x), (A14)

for haplotype g, 1, 1.

In particular, in the first generation after a change of state

from y1 to y2, we have from (A14)

�̂1(z | g, 1, 1) = 1

3

z+1∑
x=z−1

�̂0(x), (A15)

where the subscript 0 denotes the generation before the change of

state, and �̂0(x) = 0 for x ≥ y2 − w. Hence,

�̂1(y2 − w | g, 1, 1) = 1

3
�̂0(y2 − w − 1) = 1

3
�̂0(y1 + w),

�̂1(z | g, 1, 1) = 0 for z > y2 − w. (A16)

Thus the fitnesses of these SE strategists, whether g = g1 or g2,

are

ŵ1(g, 1, 1 | y2) = 1

3

y2+w∑
z=y2−w

�̂1(z | g, 1, 1) = 1

3
�̂0(y1 + w).

(A17)

Substituting (A16) and (A17) in (A6) yields

�̂1(y2 − w) = 1. (A18)

While the environment remains in state y2 (2 ≤ t ≤ l), equation

(A14) applies with �̂ t−1(x) = 0 for |x − y2| > w. Hence, the fit-

nesses are

ŵt (g, 1, 1 | y2) = 1

3

y2+w∑
z=y2−w

z+1∑
x=z−1

�̂ t−1(x) (A19a)

= 1

3
�̂ t−1(y2) if w = 0, (A19b)

= 1 − 1

3
�̂ t−1(y2 − w) − 1

3
�̂ t−1(y2 + w) if w ≥ 1.

(A19c)

Moreover, when the haplotype frequencies are at equilibrium,

(A6), (A14), and (A19a) entail that the distribution of surviving

phenotypes satisfies the recursion

�̂ t (z
∗) =

z∗+1∑
x=z∗−1

�̂ t−1(x)

y2+w∑
u=y2−w

u+1∑
x=u−1

�̂ t−1(x)

(A20)

for |z∗ − y2| ≤ w. In particular, �̂ t (y2) = 1 and ŵt (g, 1, 1 | y2) =
1
3 for 1 ≤ t ≤ l if w = 0. The relative abundances of the surviving

phenotypes can be computed using (A18) and (A20) and are shown

in Table 1a and 1b.

Clearly, a mirror-image pattern is repeated when environment

reverts to state y1.

Let us now introduce the GE strategy haplotypes g1, 0, 1 and

g2, 0, 1 at low frequencies. Unless g1 = y1 + w or g2 = y2 − w,

both haplotypes will be selected out. We set g1 = y1 + w, and

compute the fitness of haplotype g1, 0, 1. Assuming w ≥ 1, the

fitnesses of haplotype g1, 0, 1 in environmental states y1 and y2

are

wt (g1, 0, 1 | y1) = 2

3
, wt (g1, 0, 1 | y2) = 1

3
. (A21)

Hence, the product of the fitnesses over one period of duration 2l

is

w̃GE(g1, 0, 1) =
(

1

3

)l (
2

3

)l

= 2l

32l
. (A22)

On the other hand, the fitnesses of the SE strategists (g = g1 or
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g2) when GE strategists are rare can be approximated by

w1(g, 1, 1 | y2) = 1

3
�̂0(y1 + w) ≡ 1

3
�̂ l (y1 + w)

w1(g, 1, 1 | y1) = 1

3
�̂0(y2 − w) ≡ 1

3
�̂ l (y2 − w), (A23a)

and from (A19c)

wt (g, 1, 1 | y2) = 1 − 1

3
�̂ t−1(y2 − w) − 1

3
�̂ t−1(y2 + w)

wt (g, 1, 1 | y1) = 1 − 1

3
�̂ t−1(y1 + w) − 1

3
�̂ t−1(y1 − w) (A23b)

for 2 ≤ t ≤ l.

Referring to Table 1a or 1b, and using (A23a) and (A23b),

the product of the fitnesses when l = 3 is

w̃SE(g, 1, 1) =
[

1

3
· 2

5

(
1 − 1

3
· 1

) (
1 − 1

3
· 1

2

)]2

= 22

36
.

(A24a)

Comparing (A24a) with (A22), w̃SE(g1, 1, 1) = w̃SE(g2, 1, 1) <

w̃GE(g1, 0, 1) when l = 3, and the equilibrium is unstable to inva-

sion by the GE strategy haplotype g1, 0, 1.

For l ≥ 4 the entries of Table 1a (w = 1) and Table 1b (w ≥
2) differ. Here we compute the fitnesses of SE organisms assuming

w = 1, but we get identical results when w ≥ 2. Then

w̃SE(g, 1, 1) =
[

1

3
· 4

12

(
1 − 1

3
· 1

) (
1 − 1

3
· 1

2

)

×
(

1 − 1

3
· 2

5
− 1

3
· 1

5

)]2

= 24

38
, (A24b)

whence from (A22) w̃SE(g1, 1, 1) = w̃SE(g2, 1, 1) = w̃GE(g1,

0, 1), and the eigenvalue is one.

For l = 5

w̃SE(g, 1, 1) =
[

1

3
· 9

29

(
1 − 1

3
· 1

)

×
(

1 − 1

3
· 1

2

) (
1 − 1

3
· 2

5
− 1

3
· 1

5

)

×
(

1 − 1

3
· 4

12
− 1

3
· 3

12

)]2

= 1

36
(A24c)

so that w̃SE(g1, 1, 1) = w̃SE(g2, 1, 1) > w̃GE(g1, 0, 1), and the

equilibrium with only SE present is stable.

Appendix 4
EQUILIBRIUM IN A CONTIGUOUS ENVIRONMENT

WITH ASYMMETRIC LEARNING

Assume a nonoverlapping contiguous environment and asymmet-

ric individual learning (eq. 3). For the special case of w = 1, we

investigate the properties of the equilibrium at which the SE strat-

egy is fixed and also its stability to invasion by the S strategy.

Under these conditions, the viable phenotypes in environmental

state y1 are y1 − 1, y1, and y1 + 1, whereas the viable phenotypes

in environmental state y2 are y2 − 1, y2, and y2 + 1. Moreover,

phenotypes y1 + 1 and y2 − 1 differ by one unit.

Immediately after a change of state from y1 to y2 (y1 < y2),

we have using (3a), (A1), and (A2)

�̂1(y2 − 1 | g, 1, 1) = 1

3
�̂0(y1) + 1

3
�̂0(y1 + 1),

�̂1(y2 | g, 1, 1) = 1

3
�̂0(y1 + 1),

�̂1(y2 + 1 | g, 1, 1) = 0.

(A25)

Hence, from (A3) the fitness of haplotype g, 1, 1 is

ŵ1(g, 1, 1 | y2) = 1

3
�̂0(y1) + 2

3
�̂0(y1 + 1), (A26)

Substitution of (A25) and (A26) (which hold for both g = g1 and

g2) in (A6) yields

�̂1(y2 − 1) = �̂0(y1) + �̂0(y1 + 1)

�̂0(y1) + 2�̂0(y1 + 1)
,

�̂1(y2) = �̂0(y1 + 1)

�̂0(y1) + 2�̂0(y1 + 1)
,

�̂1(y2 + 1) = 0.

(A27)

Similarly, while the environment remains in state y2 (2 ≤ t≤ l),

�̂t (y2 − 1 | g, 1, 1) = 1

3
�̂ t−1(y2 − 1) + 1

3
�̂ t−1(y2)

+ 1

3
�̂ t−1(y2 + 1) = 1

3
,

�̂1(y2 | g, 1, 1) = 1

3
�̂ t−1(y2 − 1) + 1

3
�̂ t−1(y2)

+ 1

3
�̂ t−1(y2 + 1) = 1

3
,

�̂1(y2 + 1 | g, 1, 1) = 1

3
�̂ t−1(y2 − 1) + 1

3
�̂ t−1(y2)

+ 1

3
�̂ t−1(y2 + 1) = 1

3
.

(A28)

Hence,
ŵt (g, 1, 1 | y2) = 1

3
+ 1

3
+ 1

3
= 1, (A29)

and

�̂ t (y2 − 1) = �̂ t (y2) = �̂ t (y2 + 1) = 1

3
. (A30)

Next, the fitness of the S strategy haplotype g, 1, 0 introduced at

low frequency is approximately

w1(g, 1, 0 | y2) = �̂0(y1 + 1) (A31)

immediately after a change of state from y1 to y2, and

wt (g, 1, 0 | y2) = �̂ t−1(y2 − 1) + �̂ t−1(y2) + �̂ t−1(y2 + 1) = 1.

(A32)

in generations 2 ≤ t ≤ l.
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We need to distinguish the two cases l = 1 and l ≥ 2. In the

former case, the environment changes every generation, which

requires repeated application of (A27). Moreover, symmetry of

the two environmental states dictates that at equilibrium �̂1(y2 −
1) = �̂0(y1 + 1) and �̂1(y2) = �̂0(y1). Hence, the solution of

(A27) is

�̂0(y1) = 3 − √
5

2
, �̂0(y1 + 1) =

√
5 − 1

2
. (A33)

Substituting (A33) into (A26) and (A31) gives

ŵ1(g, 1, 1 | y2) =
√

5 + 1

6
,

w1(g, 1, 0 | y2) =
√

5 − 1

2
,

(A34)

respectively. Invoking symmetry again, the product of the fitnesses

over one environmental cycle (of length 2) is

w̃SE =
(√

5 + 1

6

)2

(A35)

for the SE strategists, and

w̃S =
(√

5 − 1

2

)2

(A36)

for the S strategists. Because w̃SE < w̃S , the S strategy will invade.

Next, in the case of l ≥ 2, (A29) and (A30) indicate that

the fitness of haplotype g, 1, 1 and the phenotype distribution

are both constant after the second generation in state y2 (i.e., for

2 ≤ t ≤ l). Because generations 0 and l are equivalent, we obtain

at equilibrium

�̂0(y2 − 1) = �̂0(y2) = �̂0(y2 + 1) = 1

3
, (A37)

and

ŵ1(g, 1, 1 | y2) = 1

3
· 1

3
+ 2

3
· 1

3
= 1

3
. (A38)

Thus the product of the fitnesses over one cycle of duration 2l is

w̃SE =
(

1

3

)2

· 12(l−1) = 1

9
. (A39)

On the other hand, the fitness of the rare S strategists is approxi-

mately

w1(g, 1, 0 | y2) = �̂0(y1 + 1) = 1

3
, (A40a)

and

wt (g, 1, 0 | y2) = �̂ t−1(y2 − 1) + �̂ t−1(y2) + �̂ t−1(y2 + 1) = 1

(A40b)

for 2 ≤ t ≤ l. Hence,

w̃S =
(

1

3

)2

· 12(l−1) = 1

9
. (A41)

Comparison of (A39) and (A41) shows that w̃SE = w̃S .

Finally, we sketch a proof for the special case of w = 2.

Immediately after a change of state from y1 to y2 (y1 < y2), the

phenotype distribution at equilibrium when the SE strategy is fixed

satisfies

�̂1(y2 − 2) = �̂0(y1 + 1) + �̂0(y1 + 2)

�̂0(y1 + 1) + 2�̂0(y1 + 2)
,

�̂1(y2 − 1) = �̂0(y1 + 2)

�̂0(y1 + 1) + 2�̂0(y1 + 2)
,

�̂1(y2) = 0,

�̂1(y2 + 1) = 0,

�̂1(y2 + 2) = 0.

(A42)

Subsequently, while the environment remains in state y2 (2 ≤
t ≤ l), we have




�̂ t (y2 − 2)

�̂ t (y2 − 1)

�̂ t (y2)

�̂ t (y2 + 1)


 =




1/3 0 0 0

1/3 1/3 1/3 1/3

1/3 1/3 1/3 1/3

0 1/3 1/3 1/3




×




�̂ t−1(y2 − 2)

�̂ t−1(y2 − 1)

�̂ t−1(y2)

�̂ t−1(y2 + 1)


 . (A43)

Clearly, after many generations of stasis in state y2, the equilib-

rium phenotype distribution will approach �̂∞(y2 − 2) = 0 and

�̂∞(y2 − 1) = �̂∞(y2) = �̂∞(y2 + 1) = 1/3. Hence, if l is suffi-

ciently large, then in the generation immediately after a change of

state back to y1, the fitness of the SE strategists is approximately

1/9, whereas the fitness of the S strategists is negligibly small.
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