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Introduction

Although traits acquired during the lifetime of an

organism are not directly inherited in a pure Darwinian

framework, they may change the individual’s fitness and

consequently dramatically alter the dynamics of the

evolutionary process (e.g. via genetic assimilation of

initially acquired traits through the Baldwin effect,

Baldwin, 1896; Morgan, 1896). The interplay between

evolution and phenotypic plasticity (e.g. lifetime learn-

ing, developmental plasticity, etc.) is thus far from being

trivial and has been the subject of numerous biological

(Waddington, 1942, 1953; Mery & Kawecki, 2002, 2004)

and computational (Hinton & Nowlan, 1987; Maynard-

Smith, 1987; Belew, 1990; Gruau & Whitley, 1993;

French & Messinger, 1994; Menczer & Belew, 1994;

Mayley, 1996; Moriarty & Mikkulainen, 1996; Parisi &

Nolfi, 1996; Floreano & Urzelai, 1998; Ancel, 1999; Nolfi

& Floreano, 1999; Weber & Depew, 2003) studies.

Clearly, the capacity of a phenotype to better adjust to

its environment has an advantageous effect in a nonsta-

tionary environment, allowing individuals to acclimate

to rapid changes that cannot be tracked by the slow

evolutionary process (Littman & Ackley, 1991; Todd &

Miller, 1991; Nolfi & Parisi, 1997). However, it has been

argued that phenotypic plasticity may also be beneficial

in static (or slowly changing) environments (Hinton &

Nowlan, 1987; Nolfi & Floreano, 1999), facilitating the

evolutionary search by smoothing the fitness landscape.

In recent years, a number of researchers have studied

the complex interaction between phenotypic plasticity
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Abstract

When facing the challenge of developing an individual that best fits its

environment, nature demonstrates an interesting combination of two funda-

mentally different adaptive mechanisms: genetic evolution and phenotypic

plasticity. Following numerous computational models, it has become the

accepted wisdom that lifetime acclimation (e.g. via learning) smooths the

fitness landscape and consequently accelerates evolution. However, analytical

studies, focusing on the effect of phenotypic plasticity on evolution in simple

unimodal landscapes, have often found that learning hinders the evolutionary

process rather than accelerating it. Here, we provide a general framework for

studying the effect of plasticity on evolution in multipeaked landscapes and

introduce a rigorous mathematical analysis of these dynamics. We show that

the convergence rate of the evolutionary process in a given arbitrary one-

dimensional fitness landscape is dominated by the largest descent (drawdown)

in the landscape and provide numerical evidence to support an analogous

dominance also in multidimensional landscapes. We consider several schemes

of phenotypic plasticity and examine their effect on the landscape drawdown,

identifying the conditions under which phenotypic plasticity is advantageous.

The lack of such a drawdown in unimodal landscapes vs. its dominance in

multipeaked landscapes accounts for the seemingly contradictory findings of

previous studies.
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(and specifically, learning) and evolution, employing a

variety of methodologies. Comprehensive theories that

can combine the two paradigms of evolution and

phenotypic plasticity have been recently constructed

(Schlichting & Pigliucci, 1998; West-Eberhard, 2003),

demonstrating the importance of development and

phenotypic response to environmental stimuli in evolu-

tionary theory. Here, however, we focus on one specific

question concerning adaptive evolution of phenotypes,

examining the effect of plasticity on the convergence rate

of the evolutionary process. In the seminal work of

Hinton & Nowlan (1987), a simple computational model

was introduced to demonstrate how learning can guide

and accelerate evolution (see also Maynard-Smith,

1987). Despite its obvious limitations (Nolfi & Floreano,

1999), Hinton and Nowlan’s model had successfully

demonstrated a distilled model of this effect, bringing the

interaction between learning and evolution back to the

forefront of scientific research. A large body of work that

followed Hinton and Nowlan’s study (Belew, 1990;

Littman & Ackley, 1991; Gruau & Whitley, 1993; French

& Messinger, 1994; Menczer & Belew, 1994; Littman,

1996; Nolfi & Floreano, 1999; Dopazo et al., 2001) further

explored the beneficial effect of learning on evolution.

Using various simulations of the evolutionary process,

these studies demonstrated the benefit of combining

learning and evolution in a wide range of stationary and

non-stationary environments. Specifically, it has become

the accepted wisdom that lifetime learning accelerates

evolution in stationary environments by smoothing the

fitness landscape and setting up favourable selection

preferences for those individual whose genotypic config-

urations are in the vicinity of the optimal genotype.

However, even with this ever-growing body of evi-

dence for the advantageous effect of phenotypic plasticity

on evolution, rigorous theoretical analysis of this inter-

action is still scarce. Moreover, such analyses have often

found that learning hinders evolution, leading to con-

tradictory predictions (Mery & Kawecki, 2004): Fonta-

nari & Meir (1990) performed a quantitative analysis of

an asexual version of the Hinton and Nowlan’s model,

based on a classic population genetic approach. Corro-

borating the claims made by Hinton and Nowlan, they

showed that learning contributes to the robustness of

the evolutionary process against high mutation rates.

Studying a more general selection scenario and consid-

ering a one-dimensional Gaussian fitness function,

Anderson (1995) found that while learning does have

an obvious beneficial effect in changing environments,

the advantage of learning in a fixed environment is

transient. Representing lifetime acclimation as an in-

crease in the variance of selection and using quantitative

genetic models, he showed that learning actually slows

the final convergence of the population to a maximal

fitness solution. Ancel (2000) further demonstrated that

when an extreme fitness scenario is not assumed,

phenotypic plasticity does not universally accelerate

evolution. Ancel’s findings suggest that the Baldwin

expediting effect (the term she used for this beneficial

effect of learning) may thus not be sufficient to account

for the evolutionary success of learning.

The findings of these analytical studies clearly disagree

with the beneficial effect of phenotypic plasticity that has

been demonstrated in the simulation studies cited above,

leading to a long-standing debate. We believe that the

source of the discrepancy lies in the structure of the

fitness landscapes analysed. While most of the simulation

studies explored relatively complex artificial environ-

ments, such that induce highly irregular fitness land-

scapes, the mathematical analyses have employed

common population dynamics models, focusing on uni-

modal landscapes (Table 1). These relatively simple

landscapes lack one of the key characteristics influencing

the convergence rate of the evolutionary process –

multiple local optima. The existence of multiple optima

(and consequently, multiple domains of attraction) sig-

nificantly slows down the evolutionary process and

hence may make the effect of phenotypic plasticity (or

any other mechanism that smooths the landscape) more

important. Furthermore, complex genotype–phenotype

mapping, developmental processes, epistasis, multiobjec-

tive optimization and frequency dependent selection

may all render multiple optima genetic solutions

(Wright, 1932), making such multipeaked landscapes a

feasible model for biological landscapes and the subject of

numerical (Kauffman & Levin, 1987) and experimental

(Macken & Perelson, 1989; Korona et al., 1994; Burch &

Chao, 1999; Lenski et al., 1999) studies. One noticeable

Table 1 Findings concerning the effect of phenotypic plasticity on evolution.

Fitness landscape structure Simulations results Analytical results

Extreme (one optimal phenotype) accelerates evolution [1] accelerates evolution [2]

Unimodal slows evolution [3] advantage is transient [4]

slows evolution [5]

Multipeaked (complex environments) accelerates evolution [6–10]

improves evolving solution [8–10]

N/A

[1], Hinton & Nowlan (1987); [2], Fontanari & Meir (1990); [3], Dopazo et al. (2001); [4], Anderson (1995); [5], Ancel (2000); [6], Littman &

Ackley (1991); [7], Nolfi & Floreano (1999); [8], Gruau & Whitley (1993); [9], French & Messinger, 1994; [10], Littman (1996).
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evidence for this characteristic of biological fitness land-

scapes is demonstrated by a recent study of laboratory

evolution of Escherichia coli (Fong et al., 2005). Using

parallel, replicate adaptive evolution experiments and

examining the evolution endpoints, it was shown that

the fitness landscape includes distinct peaks of increased

adaptive fitness. As shown by Table 1, a rigorous analysis

of the effect of phenotypic plasticity on evolution in such

landscapes is lacking.

To fill this gap, we focus on analysing the effects of

phenotypic plasticity on evolution in arbitrary multi-

peaked landscapes, characterizing the plasticity schemes

and conditions under which phenotypic plasticity has an

advantageous effect and identify its origins. The remain-

der of this paper is organized as follows. First, we use

Random Walk (RW) theory to analyse a simple model of

evolution and derive a rigorously quantitative measure of

evolutionary rate on any given multipeaked landscape.

We then turn to examine the effect of plasticity on

evolution: We first introduce the concept of innate vs.

effective fitness landscapes, representing the effect of

plasticity as a transformation, replacing the ‘innate’

fitness landscape that governs selection when no plasti-

city is present with an alternative ‘effective’, fitness

landscape. Using this concept and the derived RW

measure, the effect of phenotypic plasticity on evolution

can be quantified by comparing the evolutionary con-

vergence rate using the innate vs. the effective fitness

functions for selection. We study various plasticity

schemes by examining the effective fitness landscapes

they induce and their effect on the evolutionary rate. In

particular, we examine both deterministic and stochastic

models of learning as well as a simple model of random

phenotypic variation, and investigate the influence of

varying plasticity rate. The paper concludes with a discus-

sion of the implications of our findings and future work.

Mathematical analysis of evolutionary
rate in multipeaked landscapes

One-dimensional arbitrary multipeaked landscapes

Analysing the dynamics of an evolutionary search on a

given landscape has attracted considerable attention in

recent years (Kallel et al., 2001). Most efforts focused on

studying the geometric properties of fitness landscapes,

including multimodality (Goldberg, 1989), autocorrela-

tion (Weinberger, 1990), and neutrality (Huynen et al.,

1996) and on strictly uphill adaptive walk dynamics

(Kauffman & Levin, 1987), in an attempt to predict the

difficulty of the search task (Stadler, 1995). Here, we

provide a direct estimate of the time it will take a

stochastic evolutionary process to reach the global

optimum on an arbitrary landscape. To obtain a rigorous

mathematical analysis of the evolutionary process

dynamics we employ a canonical, one-dimensional

model of asexual evolution in a fixed arbitrary environ-

ment. Each genotype is encoded by single integer value x,

whose fitness value is given by F(x). We assume that the

genetic configuration in the first generation is 0 and let N

denote the location of the global optimum. Evolution is

represented as a simple random walk (RW) process

wherein the probabilities pi (taking a +1 step) and qi ¼
1 ) pi (taking a )1 step) for each location i are

determined according to the differences between the

fitness value of i and those of its neighbouring genetic

configurations (see also Appendix S2). It should be noted

that in contrast to genetic drift processes that are often

modelled by simple symmetric random walks (i.e. pi ¼
qi ¼ 1/2 for every i), here, the +1 and )1 step probabil-

ities depend on the fitness landscape structure and hence,

pi and qi are not necessarily equal and may also vary for

different i values. Consequently, we use a nonsymmetric

random walk model (Spitzer, 2001), allowing us to

represent also non-neutral selection schemes. The term

random thus refers to the stochastic nature of the walk

process, where in each point of time the step direction is

selected at random with certain probabilities. Such

nonsymmetric random walk models are commonly used

in physics, engineering, economy and finance (Hughes,

1995).

Within this model, the expected first-passage time from

0 to N, EN
0 , can serve as a good measure for the progress

rate of the evolutionary process (describing the time to

first encounter of the global optimum) and can be

explicitly calculated for any given one-dimensional land-

scape. Formally, consider a simple RW St (±1 increments)

in a changing environment on {0, 1, 2, …,N}. Let pi ¼
P(St+1 ¼ i + 1|St ¼ i) and let qi ¼ 1 ) pi ¼ P(St+1 ¼
i ) 1|St ¼ i). Let also qi denote the odds-ratio qi

pi
. Note that

q < 1 indicates a positive selection pressure, q > 1 indi-

cates a negative selection pressure, and q ¼ 1 represents

regions wherein p ¼ q and thus no selection pressures are

exerted (neutral drift). Focusing on the time it takes

evolution to reach the global optimum from an initial

genetic configuration, it should be noted that the term

positive selection pressure is used here in the sense that the

+1 mutant, which is closer to the global optimum than the

)1 mutant, is also fitter. Similarly, a negative selection

pressure indicates regions wherein the )1 mutant is more

fit than the +1 mutant. Let p0 ¼ 1 and assume that

0 < pi < 1 for all 0 < i < N. As shown in Appendix 1, the

expected first-passage time from 0 to N (i.e. the expected

time to first hit N starting at 0) on a given landscape is

EN
0 ¼ N þ 2

X
i�j

0<i;j<N

Yj

k¼i

qk:

For a multipeaked landscape, define the drawdown R as

the maximal element in this sum:

R ¼ max
i�j

0�i;j<N

Yj

k¼i

qk:
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This characterizing feature of the landscape has also been

termed in the literature gap or extent (Noskowicz &

Goldhirsch, 1990; Meilijson, 2003). It is shown that the

expected first-passage time is dominated by R, whereby

EN
0 is sharply bounded from above by N2ð1þR

2
Þ (see

Appendix 1 for a full analysis). Furthermore, as dem-

onstrated in Appendix 1, this bound is reached when all

qi values contributing to the drawdown collapse to a

single point in the landscape. Hence, crossing the fitness

landscape from the initial genetic configuration toward

the global optimum, R corresponds to the height differ-

ence between the record high fitness value to the

consecutive record low fitness value (i.e. the largest

descent along this fitness landscape), as illustrated in

Fig. 1.

Multidimensional arbitrary multipeaked landscapes

While the one-dimensional case allows for a rigorous

analysis of expected first-passage times, such an analysis

is hard to obtain for a multidimensional fitness land-

scape. We show however that an analogous dominance

of the drawdown on evolutionary rate can be inferred

through numerical simulations. In this case, we consider

all the possible pathways from the initial configuration

to the global optimum configuration. Each of these

pathways can be conceived as a simple one-dimensional

landscape, with a specific drawdown value. We will

term the pathway with the minimal drawdown value

‘the Principal-Pathway’ and the drawdown value it

induces ‘the Principal-Pathway drawdown’. We maintain

that the Principal-Pathway drawdown dominates the

random walk first-passage time on a given multidimen-

sional landscape in a similar manner to that shown in

the one-dimensional case (see Appendix S1 for details

and discussion).

We validate the strong correlation between the Prin-

cipal-Pathway drawdown and the first-passage time

through numerical simulations, using common multi-

modal benchmark functions. These functions are utilized

to generate numerous landscapes with one, two and

three dimensions and varying drawdown values. The

Principal-Pathway drawdown (or simple drawdown

value in the one-dimensional case) and the expected

first-passage time to the global-optimum, EN
0 , were

evaluated for each landscape (see Appendix S1 for

details). As demonstrated in Fig. 2, there is a strong

correlation between the drawdown value in each fitness

landscape and the first-passage time of the random walk

process, corroborating the validity of the fitness land-

scape’s drawdown as a measurable bound for the

expected evolutionary progress rate.

The effect of phenotypic plasticity on
evolution

Innate vs. effective fitness landscapes

Having established a measure of evolutionary rate, we

turn to examine the dynamics of the evolutionary

process in two modes: in the first, nonplastic mode,

phenotypic plasticity is absent and the fitness value Fð~xÞ
assigned to each genotypic configuration ~x is uniquely

determined according to the innate survival and repro-

duction probability of the phenotype that it encodes,

termed innate fitness. In the second, plastic mode, pheno-

types can vary during their lifetime and as a result may

effectively gain a different (and potentially higher) fitness

value. Clearly, in this mode, selection operates according

to the effective fitness value obtained by each individual.

We denote this effective fitness value, Fefcð~xÞ. It should be

noted that both the innate and the effective fitness

landscapes ultimately correspond to the common notion

of fitness in natural selection. We use the terms innate

and effective fitness to simply distinguish between the

fitness values that govern selection without and with

plasticity. Phenotypic plasticity hence manifests itself as a

transformation of the fitness landscape, replacing the

innate fitness that initially governed selection with an

effective fitness landscape (Fig. 3a). The strength of this

simple model lies in the fact that the complex dynamics

of a hybrid process combining evolution and phenotypic

plasticity can be studied by examining the simpler

dynamics of a pure evolutionary process on the appro-

priate effective fitness landscape. The effect of phenotypic

plasticity on the evolutionary convergence rate can be

measured by comparing the time it takes the evolution-

ary process to obtain an optimal genotype using the

innate vs. the effective fitness functions for selection. In

particular, the random walk analysis and drawdown

value presented in the section ‘Mathematical analysis of

evolutionary rate in multipeaked landscapes’ provide a

measurable bound for the expected evolutionary

progress rate for any given landscape, allowing for a

direct quantitative comparison between the innate and

the effective fitness landscapes.Fig. 1 A qualitative illustration of the fitness drawdown.
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In this section we examine several models of pheno-

typic plasticity, for which the resulting effective fitness

landscapes can be explicitly constructed and studied. We

start with a simple model of deterministic learning,

where phenotypic plasticity is manifested as a hill

climbing process (either ideal or partial). Next, we

examine a stochastic learning model in which the

direction of each learning iteration is determined prob-

abilistically. Finally, although traditionally not defined as

a form of phenotypic plasticity, a model of random

phenotypic variation is presented, where each genotype

randomly realizes one of several alternative phenotypes.

We compare the drawdown of the original, innate

landscape with that of the resulting effective fitness

landscapes induced by these plasticity schemes. Identify-

ing the schemes and conditions under which the fitness

landscape drawdown is reduced (and thus, the rate of

evolution is accelerated) provides a characterization of

the beneficial effect of phenotypic plasticity.
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Fig. 2 (a) An example of two-dimensional landscapes generated by

the Rastrigin function (Cr ¼ 3) and the Schwefel function (Cs ¼
0.01) (see Appendix S1 for more details on these functions). (b) The

correlation between the expected first-passage time and the land-

scape drawdown. Numerous landscapes of different dimensions and

varying drawdown were tested. EN
0 was evaluated for each landscape

through 100 random walk simulations. Landscapes for which not all

simulations hit the global optimum within 250 000 steps were

excluded from our analysis. For the one-dimensional landscapes, the

expected first-passage time was analytically calculated as described

before. The drawdown value is normalized according to the

asymptotic bound found for the one-dimensional case, where N

denotes the length of the pathway. As the drawdown values (and

consequently, the first-passage times) exhibit a large variation, a

logarithmic scale was applied. Linear regression analysis for the

correlation between R and EN
0 in the Rastrigin landscapes yielded

coefficient of determination values (per cent of variance explained)

of 0.995, 0.9971 and 0.9961 for the one, two and three-dimensional

landscapes respectively. In the Schwefel landscapes the resulting

coefficient of determination values were 0.9809, 0.9718 and 0.9818

for the same dimensions.

Fig. 3 The effect of deterministic learning on the fitness landscape. (a)

An individual with genotype configuration x and innate fitness value

F(x) may acclimate by learning (illustrated here as a simple gradient

ascent process) and gain a fitness value of F(x + Dx). As the genotype of

this individual remains unchanged, the effective fitness value

Fefc(x) ¼ F(x + Dx) is applied to x. (b) The innate fitness function (solid

line) and the effective functions obtained with partial learning, i.e.

after a limited number of hill-climbing iterations (dotted line), and

with ideal learning (dashed line). In the ideal learning scheme all

configurations in the basin of attraction of a given local optimum (e.g.

genotypes x1 and x2 in the interval [B, D]) acquire the same effective

fitness value, that of the local optimum (C).
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Ideal and partial deterministic learning

Individual learning, as a form of phenotypic plasticity, is

modelled as an iterative process of phenotypic modifica-

tions aimed at increasing the individual’s effective fitness,

taking the form of a simple gradient-ascent process in the

genotype/phenotype space. As in previous studies (Hin-

ton & Nowlan, 1987; Anderson, 1995), we focus on the

simple case of one-to-one mapping from genotype to

phenotype and assume that learning and evolution both

operate on the same fixed fitness landscape (see also the

section ‘Discussion’). We examine a simple model of

learning where during each learning episode (iteration),

an individual compares the innate fitness value of its

current configuration with those of slightly modified

configurations, and adopts a modified configuration if

the latter’s innate fitness value is higher (see Fig. 3a for

an illustration). Such learning iterations may repeat,

allowing the individual to adopt behaviours further away

from its innate one, resulting in a modification of its

effective fitness accordingly (although its genotype

remains unchanged).

We first consider an ideal deterministic learning model,

where each individual repeatedly employs such deter-

ministic hill-climbing learning iterations until it reaches

the nearest local-optimum and no further improvement

of its effective fitness is possible. As demonstrated in

Fig. 3b, in ideal learning all genetic configurations in the

region forming the basin of attraction of a given local

optimum will eventually acquire the same effective

fitness value, equal to the innate fitness of the local

optimum, totally suppressing selection pressures within

each such region. In the one-dimensional case, ideal

learning transforms each given consecutive pair of

descending and ascending intervals in the innate fitness

landscape into a single step function in the effective

fitness landscape, whose height is equal to the difference

between the extents of this descent and the consequent

ascent (Fig. 3b). The drawdown characterizing the effect-

ive fitness landscape is hence smaller (or equal, in the

worst case) than that induced by the original, innate

fitness landscape (see also Fig. 4). As demonstrated

above, a smaller drawdown value implies a shorter

first-passage time, making the beneficial effect of this

learning scheme evident.

The mathematical analysis presented above can

account for the seemingly contradictory findings of

previous studies concerning simple fitness landscapes

(Anderson, 1995; Ancel, 2000; Dopazo et al., 2001), in

which learning was found to hinder the evolutionary

process. While the evolutionary rate in multipeaked

landscapes is dominated by the landscape drawdown, in

the simple unimodal scenario, no drawdown exists (R ¼
1), and consequently the marked beneficial effect of

learning demonstrated above is absent. In terms of our

model, in such single peaked landscapes, the evolution-

ary process is scaled down to a simple random walk

within a positive slope interval. As learning decreases the

slope of the fitness function (causing q
p

to approach

unity), our model clearly shows (see Appendix 1,

Example 2, concerning a constant environment) that

learning would slow down the convergence rate, as

Anderson (1995) and Ancel (2000) have indeed found.

In particular, learning schemes that cancel all selection

pressures and produce a totally flat effective landscape (as

is the case in ideal learning) result in a random drift

process with quadratic first-passage times, markedly

slower than the linear first-passage time in the innate

single-peaked landscape (see Appendix 1, Example 1

and Example 2). It is only in a multipeaked landscape

(Wright, 1932; Kauffman & Levin, 1987; Kauffman,

1993; Korona et al., 1994; Burch & Chao, 1999; Lenski

et al., 1999; Fong et al., 2005), where the overall evolu-

tionary rate is dominated by the exponential passage

time in the negative selection regions, that the beneficial

effect of ideal learning is demonstrated.

When learning ‘resources’ are limited (e.g. learning is

bounded by a certain cost) and individuals employ only a

limited number of hill-climbing iterations, a partial plastic

mode is obtained rather than ideal learning mode. In this

mode, not all genetic configurations in the basin of

attraction of each local optimum will inevitably gain the

same effective fitness value. Individuals with innate

genetic configurations farther from the local optimum

configuration do improve through learning (and gain a

higher effective fitness value), but may fall short of

Fig. 4 The effect of ideal deterministic learning on the fitness

landscape drawdown. The generalized Schwefel function described

in Appendix S1 is used to generate two-dimensional fitness land-

scapes with varying ruggedness (tuned via the Cs parameter whose

higher values denote increased levels of ruggedness). Ideal learning

is then applied to produce the corresponding effective fitness

landscape. The Principal-Pathway drawdown calculated for each

landscape is illustrated. Evidently, the drawdown induced by the

effective fitness is significantly smaller (note the logarithmic scale)

than that induced by the innate fitness.
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reaching the local optimum’s exact fitness level. The

effective fitness landscape forms an intermediate state

between the plastic and non-plastic modes, including

both intervals with constant fitness and intervals with

positive or negative slopes (Fig. 3b). Clearly, a partial

learning scheme still reduces the extent of the innate

landscape drawdown (and hence, will still accelerate

evolution), though it does not cancel them altogether. It

is thus expected that this learning mode will yield an

intermediate convergence time, progressing slower than

the ideal plastic mode, but still faster than the nonplastic

one.

These effects of deterministic learning are validated

numerically (see Appendix S2 for the simulation details).

The mean first-passage time of each genetic configur-

ation x (i.e. the expected time to first hit x starting at 0) is

illustrated in Fig. 5b. The curves clearly agree with the

results of our analysis. Figure 5c demonstrates the

average innate fitness value of the evolving individual

as a function of generation of the evolutionary process.

Evidently, individuals evolving in the plastic mode

converge much faster to the global optimum and gain

higher fitness values. Although learning individuals

using ideal learning do not converge to the exact global

optimum, they successfully reach its basin of attraction

and possess higher innate fitness values than nonplastic

individuals who tend to get trapped in remote local

optima. Examining the effect of partial learning, we find,

as expected, that this mode yields an intermediate

convergence time, progressing slower than the plastic

mode, but still faster than the nonplastic one (Fig. 5b).

Furthermore, as this form of learning does not entirely

suppress the selection pressures in each optimum

domain, it allows individuals that hit the global optimum

basin of attraction to converge closer to the exact global

optimum configuration, resulting in overall better aver-

age innate fitness values than those obtained with ideal

learning (Fig. 5c).

Stochastic learning

Both the ideal and the partial learning schemes examined

above embody two basic characteristics: locality and

Fig. 5 The effect of ideal deterministic learning (IDLL), partial

deterministic learning and stochastic learning on the evolutionary

process in the one-dimensional case. (a) A one-dimensional innate

fitness function was defined on the interval [1; 200] as a sum of

several Gaussian functions, yielding a continuous, multipeaked

function F(x) (solid line). Various plasticity schemes were then

applied to produce the corresponding effective fitness functions (see

Appendix S2 for more details). (b) The first-passage time of each

genetic configuration x (i.e. the average time to first hit x). Each

curve represents the average result of 100 runs for the deterministic

learning stimulation and 10 runs for stochastic learning stimulation.

In the plastic mode, using a deterministic learning scheme, all 100

simulation runs hit the global optimum within less than 16 200

generations. In the non-plastic mode, although the linear expected

first hitting time in the positive slope intervals yields a fast progress,

the exponential behaviour in the negative slope intervals dominates

the dynamics of the random walk and hinders the evolutionary

process. Out of 100 simulated evolutions, each running for a

maximum of 200 000 generations, 16 never hit the third local

optimum (x ¼ 97) and 67 failed to hit the forth (x ¼ 130). (c) The

mean innate fitness value as a function of generation. The standard

deviation of the non-plastic mode and plastic mode with ideal

deterministic learning is also illustrated.
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accuracy; learning was assumed to exploit only local

information about the fitness landscape on which it

operates, and to do so with complete accuracy. It is these

two features that guarantee the preservation of extrema

domains in the effective landscape. However, the lack of

complete environmental data, sensory input noise,

imperfect information processing and nondeterministic

decision making, all make a stochastic learning process

more plausible as a model of learning in biology. Yet, as

stochastic local search schemes are not bound to take the

steepest ascent route, and can potentially discover

remote local optima, the effective fitness function they

yield may have a different regional structure than that of

the original innate fitness. For example, in an extreme

scenario, a stochastic learning algorithm may allow any

innate genetic configuration to successfully reach the

global optimum solution, totally suppressing genetic

selection pressures. In this scenario the evolutionary

process turns into a random drift, which, as was demon-

strated in Appendix 1, yields a quadratic first-passage

time.

To study the effects of stochastic learning, we use a

simple variation of our model, where the hill-climbing

learning algorithm is replaced with a simulated anneal-

ing (SA) optimization process (Kirkpatrick et al., 1983)

(see Appendix S2 for details). Clearly, stochastic learning

does not guarantee a consistent fitness gain each time

learning is applied. Consequently, the effective fitness

value assigned to each genetic configuration varies from

one learning process to the other and a deterministic

effective fitness function cannot be explicitly constructed

in advance. Yet, examining the characteristics of the

average effective fitness function constructed by this

stochastic scheme (see, for example, Fig. 7b), it is clear

that the drawdown induced by the average effective

landscape is smaller than that of the original innate

landscape.

Numerical simulations of an evolving population apply-

ing stochastic learning (where the effective fitness is

appropriately evaluated repeatedly for each individual in

each generation) validate that this learning scheme indeed

accelerates the evolutionary process. Evidently (Fig. 5b,c),

also with a stochastic learning paradigm, learning individ-

uals converge faster and gain significantly higher innate

fitness values than those evolving in the nonplastic mode,

obtaining values similar to those obtained with determin-

istic learning. Furthermore, it is shown that stochastic

learning not only accelerates evolution in comparison to

the nonplastic mode, but yields superior evolutionary

convergence rates even in comparison to those obtained in

the deterministic learning scheme examined above. The

superiority of this scheme can be attributed to the resulting

effective fitness landscape which is smoother (on average)

than the one produced by a deterministic scheme. This can

allow individuals near the boundary between basins of

attraction to stochastically converge to either of the two

adjacent local optima.

It should be noted that in the extreme case, stochastic

learning can produce a totally flat effective fitness

landscape, suppressing all selection pressures, even in a

multipeaked landscape. However, while the quadratic

first-passage time induced by random drift on a flat

landscape hinders evolution in comparison with the

linear time on a single peaked landscape, it is still

superior to the exponential first-passage time expected

on a multipeaked landscape.

Random phenotypic variation

The learning schemes discussed above represent a

directed model of plasticity, aiming at increasing the

individual effective fitness. However, phenotypic plasti-

city may also take the form of increased phenotypic

variation (or developmental noise) in response to envi-

ronmental fluctuations (Gavrilets & Hastings, 1994).

Although biologists often refer to phenotypic plasticity

as a beneficial response to the environment (rather than a

random variation), here, as in Ancel & Fontana (2000),

we wish to examine the effect of a random phenotypic

flexibility scheme. This form of plasticity may be more

common in molecular evolution, wherein a certain

genotype may realize a range of phenotypic configura-

tions according to the microenvironemntal context.

Such random perturbations are clearly not necessarily

in the direction of improved fitness. However, assuming

some correlation between the phenotypic and genotypic

spaces, on average, genotypes assigned with low innate

fitness values will gain more by these perturbations than

genotypes with high innate fitness values. In the extreme

case, genotypes located in a local minima of the fitness

landscape can only gain higher effective fitness by

realizing phenotypes of neighbouring configurations,

while genotypes located on local maxima will inevitably

gain lower effective fitness. This dynamics, although

stochastic, lead to a reduction in the fitness landscape

drawdown, and hence, according to our analysis, accel-

erate evolution. Applying a simple model of genetic

variation, where each genotype ‘develops’ into a pheno-

type associated with a randomly selected neighbouring

genetic configuration within a predefined range, Dd (see

Appendix S2 for more details), we validate the beneficial

effect of this plasticity scheme (Fig. 6).

A simple example of such a plasticity scheme can be

demonstrate in the RNA secondary structure. While the

minimum free energy (MFE) secondary structure of an

RNA sequence defines a simple mapping from genotypes

to phenotypes, in practice, an RNA molecule may fold

into a wide range of secondary structure configurations,

providing that the energy barriers are sufficiently small.

These phenomena can be conceived as the RNA equiv-

alent of phenotypic plasticity or developmental noise

(Ancel & Fontana, 2000). Furthermore, as demonstrated

by Ancel & Fontana (2000), there is a significant

correlation between the repertoire of thermodynamically
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accessible configurations and genetically accessible con-

figurations (a phenomenon they term plastogenetic con-

gruence). This correlation implies that RNA molecules that

make such thermodynamic transitions can be described

as effectively realizing MFE structures associated with

neighbouring genotypic configurations. Interestingly,

examining whether phenotypic plasticity expedites the

evolutionary discovery of new structures in RNA, Ancel

& Fontana (2000) find that no such expediting occurs

due to intrinsic properties of the RNA genotype–pheno-

type map. Specifically, the high neutrality incorporated

in the RNA genotype–phenotype map and its organiza-

tion make the beneficial effect of plasticity restricted

to relatively small regions in the genotypic space.

Consequentially, the benefit gained by plasticity is

negligible compared to the time it takes to discover these

regions in the first place.

Varying learning rates

Evidently, different plasticity schemes yield different

dynamics of the evolutionary process and result in

different convergence rates. The number of phenotype

acclimation iterations employed during life or the

phenotypic variation range (which will both be referred

to here as the plasticity rate) may also influence the

convergence rate and the stability of the evolutionary

process, as was demonstrated by the favourable effects

of the partial learning scheme. To further explore and

compare the effect of these learning schemes and in

particular the effect of varying plasticity rates, an

additional set of simulations was carried out. Fig-

ure 7a–c illustrate the effective fitness functions con-

structed by each scenario that was tested. To reduce the

long computation time in stochastic learning simula-

tions, the mean effective fitness was used as a constant

effective fitness landscape, approximating a genuine

stochastic learning paradigm.

Two measures were examined for each scenario: the

overall convergence time, which was taken as the first-passage

time of the global optimum (x ¼ 193), and the genetic

stability of the evolving individuals that was measured as

the average genetic deviation from the global optimum

configuration throughout 1000 generations following the

first-passage time. As shown in Fig. 7d, the best conver-

gence time for deterministic learning is obtained with

10 learning iterations. There is also a clear tradeoff

between the convergence time and the genetic stability

of the resulting evolutionary process. Figure 7e illustrates

the results for stochastic learning schemes with varying

number of SA iterations. Evidently, a low number of

stochastic learning iterations results in faster convergence

rates than those obtained with deterministic schemes and

still yields relatively stable genetic solutions. Only when

the learning process employs a considerably large number

of stochastic iterations it diverges from the original

structure of the innate fitness function (see Fig. 7b),

reducing dramatically the evolutionary selection pressures

and consequently reducing the genetic stability of the

evolving individuals. A clear tradeoff between the con-

vergence time and the genetic stability is also demonstra-

ted in the phenotypic variation experiments (Fig. 7f).

Applying a large variation (e.g. Dd ¼ 15) results in a fast

convergence rate, comparable with that obtained by

deterministic learning, but dramatically reduces the gen-

etic stability.

Numerical extensions of the random walk
model

While the Random Walk model presented above allows

for a rigorous analysis of first passage times, there are a

few extensions that make this model more biologically

plausible. In particular, we wish to examine whether the

possibility to stay in the same genetic configuration over

Fig. 6 The effect of random phenotypic variation with Dd ¼ 15 on

the evolutionary process. Each curve represents the average result of

100 simulation runs. (a) Mean first-passage time as a function of the

genetic configuration x. The results obtained under the ideal

deterministic learning scheme are depicted for comparison. (b) The

mean and standard deviation of the innate fitness value as a function

of generation.
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several generations and the transformation from the

fitness landscape values to fixation probabilities affect

the resulting dynamics. The analytical treatment of the

behaviour of the RW model with these extensions turns

to be a difficult challenge, and hence these extensions are

examined numerically in this section.

Random walk with static periods

As the RW model presented above assumes that in each

point in time the walk process takes either a +1 or a )1

step, our measure of first passage time can be interpreted

as measuring the number of mutation events required to

reach the global optima. However, in practice, the

population may stay in the same genetic configuration

for many generations. Hence, if we wish to measure the

convergence time in number of generations, we should

also allow the walk process to stay in the same

configuration with some probability.

As demonstrated in Fig. 8a, introducing this extension

to the model (see Appendix S2 for the simulation details)

does not significantly change the resulting dynamics, and

in particular, preserves the superiority of the plastic mode

vs. the non-plastic mode. Apparently, although the

probability to stay in the same genetic configuration is

higher in neutral regions of the landscapes (which are

abundant in the landscape induced by ideal plasticity)

than in positive selection regions, the overall conver-

gence time is still dominated by the slow exponential

time it takes to cross negative selection regions (and,

particularity, the fitness drawdown). The main effect of

this extension is manifested by an overall, relatively

constant delay in the time to reach each genetic confi-

guration in comparison to the basic model.

Random walk with Kimura’s fixation probabilities

To further relax some of the differences between our

model and traditional population biology models, we

apply Kimura’s theory for population dynamics on

neutral (or nearly neutral) landscapes (Kimura, 1983).

Specifically, we use Kimura fixation probabilities rather

than the Boltzmann scaling (see also Appendix S2) to

determine the RW probabilities. Under this extension,

our RW model is closely related to common evolutionary

dynamics models on nearly neutral landscapes, taking

also the population size into account. Moreover, assu-

ming that the mutation rate is slow (and hence, each

mutation becomes either fixated or extinct before the

next mutation arises), the first passage time measure, EN
0 ,

Fig. 7 The effect of various plasticity schemes and varying plasticity rate on evolution. (a–c) The average effective fitness functions resulting by

a varying numbers of deterministic and stochastic learning iterations and by varying phenotypic variation range. Employing more than 14

deterministic learning iterations results with an effective fitness similar to the one obtained by ideal learning. The curves illustrated in (c)

represent the average of 50 000 runs. (d–f) The average convergence rate, measured as the mean first-passage time of the global optimum (solid

line) and genetic stability (dashed line) obtained for varying plasticity rates. Most simulation runs using less than six deterministic learning

iterations did not converge to the global optimum.
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indicates the number of mutations that are required to

appear until the population fixates on the landscape’s

global optimum and can be now easily translated to the

expected number of generations simply by multiplying

EN
0 by the mutation rate m. As in the previous section, this

extension allows for the population to stay in the same

genetic configuration over several generations if none of

the neighbouring mutations is fixate.

As can be seen in Fig. 8b, using Kimura’s probabilities

dramatically slows down the entire process (note the

first-passage time scale), mainly due to the significantly

smaller probabilities of a neutral (p ¼ 1/2Ne) or deleteri-

ous mutation to fixate. Clearly, in this model, fixation of

a slightly beneficial mutation is markedly faster than that

of a neutral mutation. Yet, as in our previous analysis,

the probability of fixation of a slightly deleterious

mutation becomes infinitesimally (exponentially) small

as the population size increases and hence still dominates

the overall convergence time, resulting in the superiority

of the plastic mode over the nonplastic one.

Discussion

Our study focuses on the effects of phenotypic plasticity

on the evolutionary convergence rate in stationary

environments. We use random walk theory to derive a

measure for the rate of evolution on arbitrary multi-

peaked fitness landscapes, and demonstrate that the

convergence rate is dominated by the landscape draw-

down. Examining various phenotypic plasticity schemes

we find that these schemes decrease the landscape

drawdown and hence, accelerate evolution. These find-

ings introduce a rigorous quantitative confirmation of the

common hypothesis stating that phenotypic plasticity

expedites evolution by smoothing the fitness landscape

and identify the origins of this phenomenon. Our

analysis provides a measure for both the convergence

rate bottleneck induced by the landscape drawdown, and

the benefit gained by smoothing the landscape and

reducing the extent of the drawdown.

Our findings suggest two fundamental principles that

affect the interaction between phenotypic plasticity and

evolution. First, as the benefit of plasticity originates in

its capacity to smooth the fitness landscape, this effect

will be revealed only in multipeaked landscapes wherein

the evolutionary rate is dominated by the landscape

drawdown. Conversely, if selection takes place only

within the domain of a simple fitness function that does

not include multiple local optima, plasticity hinders the

evolutionary process as was also demonstrated in pre-

vious studies (Anderson, 1995; Ancel, 2000). Secondly,

our analysis suggests that plasticity has a beneficial effect

on evolution when genotypes with low innate fitness

values (e.g. individuals at local fitness minima) gain

more through phenotypic plasticity than genotypes with

high innate fitness values (e.g. with local maxima

configurations). These dynamics are governed mainly

by the correlation between the genotypic and pheno-

typic spaces (determined by the genotype–phenotype

mapping). As demonstrate in the section ‘Random

phenotypic variation’, when such a correlation exists,

phenotypic modifications due to plasticity are analogous

to perturbations in the genetic space, and consequently

plasticity yields, on average, higher gain for those

individuals whose genotypes are located on local fitness

minima.

Mayley (1997) discussed the effects of learning on

evolution in a rugged landscape, arguing that such

settings may give rise to two competing effects: a guiding

effect, helping evolution to detect individuals located

near superior local optima, and a hiding effect where

learning suppresses the selection pressures within each

local optima basin of attraction. Our analysis demon-

strates that in this scenario, the guiding effect outweighs

the hiding effect, resulting with an overall acceleration of

the evolutionary process.

Clearly, the fixed landscape, the one-to-one genotype-

phenotype mapping and the specific phenotypic plasticity

Fig. 8 Numerical extensions of the random-walk model. (a) First-

passage times for each genetic configuration using a random walk

model with static periods. (b) First-passage times for each genetic

configuration using Kimura’s fixation probabilities.
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schemes examined in this study are a simplification of

the dynamics that take place in natural systems. Living

organisms incorporate a complex developmental process

that may disturb the correlation between the phenotype

and genotype spaces (Downing, 2004) and apply diverse

and sophisticated plasticity methods. Associating plasti-

city costs may also affect the resulting fitness gain

(Mayley, 1996). Moreover, the random walk model

applied in this study restricts evolution to ±1 increments,

corresponding to small mutations. However, real muta-

tions can come in a wide variety of increments, markedly

influencing the evolutionary trajectory. Specifically,

large mutations can help the evolutionary process to

cross fitness valley barriers, reducing (though, most

probably, not cancelling altogether) the deleterious effect

of the fitness landscape drawdown. The effect of such

mutations on the evolutionary dynamics in innate vs.

effective fitness landscapes is of much interest and

may vary with the exact structure of the landscape.

Unfortunately, characterizing the structure of fitness

landscapes of biological systems and the dynamics of

biological plasticity is still an open question. We have

thus focused on a simple mathematical model, with fully

correlated landscapes, allowing us to explicitly con-

struct and examine the resulting effective fitness function

and to derive a rigorous, quantitative analysis of the

expected convergence rate. However, the approach

presented in the paper and the mathematical analysis

of first-passage times can be utilized to examine the

effects of additional plasticity paradigms and landscapes

structures, as long as the effective fitness landscapes can

be evaluated.

Future research may be able to predict scenarios in

which phenotypic plasticity will be favoured by evolu-

tion. In particular, while the exact structure of the

fitness landscape is usually hard to characterize, there

are cases where multipeaked landscapes are expected.

For example, whenever the evolutionary process is

required to optimize multiple objectives with a certain

trade off function, multiple local optima usually exist

(e.g. Oksanen & Lundberg, 1995). In such cases,

phenotypic plasticity, being a mechanism that expedites

the discovery rate of new optima, is valuable. We thus

believe that increased phenotypic variation should be

correlated with the existence and abundance of multiple

optima.

An example of a biological experiment designed to

directly examine the effect of learning on evolution has

recently been presented (Mery & Kawecki, 2004). In this

exciting study, populations of Drosophila melanogaster

were exposed to various selection regimes concerning

preference for oviposition substrate with and without the

ability to use aversion learning. The results of this study

showed that learning may evolve even in a stationary

environment (in contrast to the common argument that

learning should be favoured only in a changing envi-

ronment). However, examining whether learning ability

affects the evolution of the innate component, they

found that learning facilitated evolution in one direction

of selection while hindering it in the other, leaving the

controversy concerning the effect of learning on evolu-

tion unresolved.

Evidently, the dynamics governing the evolution of

plastic individuals is still far from being completely

characterized or understood. The variety of phenotypic

plasticity mechanisms found in biological systems and

their complexity render a challenging task. However,

quantitative analysis of complex phenomena often

requires simple models. While acknowledging its limita-

tions, we believe that the framework presented in this

paper can serve as a theoretical basis for future studies of

issues concerning the interplay between phenotypic

plasticity and evolution.
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Appendix 1: mean first-passage times of a
simple one-dimensional random walk in
an arbitrary environment

First, we clarify the distinction between the well-estab-

lished theory of random walk in random-environments

(RWRE) and our analysis: the theory of RWRE deals

with the scenario where the probabilities to take a +1

or )1 step are independently chosen from some distri-

bution on (0,1), characterizing sublinear or linear speed

and large deviation questions. Our analysis, in contrast,

relates to the simpler setup of a random walk on a finite

set, but allows these probabilities to be arbitrary given

constants.

1.1: general form and pertaining examples

Consider a simple random walk St in a changing envi-

ronment on {0, 1, 2,…, N}. Let pi ¼ P(St+1 ¼ i + 1|St ¼ i)

and let qi ¼ 1 ) pi ¼ P(St+1 ¼ i ) 1|St ¼ i). Let p0 ¼ 1

and assume that 0 < pi < 1 for all 0 < i < N. Let E
j
i

denote the mean first-passage time from i to j, i.e. the

expected time to first hit j starting at i. We get E1
0 ¼ 1 and

the recursion

Eiþ1
i ¼ 1þpi �0þð1�piÞ½Ei

i�1þEiþ1
i �; i¼ 1;2; . . . ;N�1:

ð1Þ

Letting qi denote the odds ratio 1�pi

pi
, eqn 1 may be

written as

Eiþ1
i ¼ 1þ qi½1þ Ei

i�1�

whose solution can be easily seen to be

Eiþ1
i ¼ 1þ 2

Xi

j¼1

Yi

k¼j

qk:

As

EN
0 ¼

XN�1

i¼0

Eiþ1
i ;

we finally obtain

EN
0 ¼ N þ 2

X
i�j

0<i;j<N

Yj

k¼i

qk:

Interestingly, this expression for the mean first-passage

time from 0 to N can also be represented as the quadratic

form

EN
0 ¼ 10~A1; ð2Þ

where

In particular, consider the following examples, demon-

strating the mean first-passage time in a constant

environment.

Example 1: constant symmetric environment
In a constant symmetric environment, pi � 1

2
(qi ” 1) for

all 0 < i < N and ~A ¼ 110, the matrix of ones (N · N).

The quadractic form (eqn 2) then yields EN
0 ¼ N2.

Example 2: constant nonsymmetric environment
In this scenario, pi � p 6¼ 1

2
(qi ” q 6¼ 1) for all 0 < i < N,

and

~A ¼

1 q q2 q3 � � � qN�1

q 1 q q2 � � � qN�2

q2 q 1 q � � � qN�3

..

. . .
. ..

.

qN�1 qN�2 qN�3 � � � q 1

0
BBBBB@

1
CCCCCA

The quadratic form (eqn 2) can be easily seen to yield

EN
0 ¼ N

1þ q
1� q

þ 2q
qN � 1

ðq� 1Þ2
;

inducing a linear first-passage time (in N) if q < 1 and an

exponential first-passage time if q > 1.

Now, consider the indices x1 < x2 <� � �< xK, where

qxi
6¼ 1ðpxi

6¼ 1
2
Þ. Also define x0 ¼ 0 and xK+1 ¼ N. Let

ni ¼ xi ) xi)1(i ¼ 1, 2,…,K + 1) denote the correspond-

ing increments. As qxi+1, qxi+2,…,qxi+1)1 all equal 1 for

each 0 £ i £ K, ~A consists of rectangular blocks and

EN
0 ¼ 10~A1 ¼ V 0AV , where V ¼ (n1, n2,…,nK+1)¢ and

~A ¼

1 q1 q1q2 q1q2q3 q1q2q3q4 � � �
QN�1

k¼1 qk

q1 1 q2 q2q3 q2q3q4 � � �
QN�1

k¼2 qk

q1q2 q2 1 q3 q3q4 � � �
QN�1

k¼3 qk

q1q2q3 q2q3 q3 1 q4 � � �
QN�1

k¼4 qk

..

. . .
. ..

.

QN�1
k¼1 qk

QN�1
k¼2 qk

QN�1
k¼3 qk � � � qN�2qN�1 qN�1 1

0
BBBBBBBB@

1
CCCCCCCCA
:
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Thus,

EN
0 ¼

XKþ1

i¼1

n2
i þ 2

X
i�j

0<i;j<Kþ1

ninjþ1

Yj

k¼1

qxk
: ð3Þ

In particular, consider the following example, com-

pactly describing the first-passage time in a typical

‘flattened’ ideal learning landscape:

Example 3: symmetric random walk with K equally
distant disturbances
In this scenario, we get

xi ¼ i
N

K þ 1
and ni � n ¼ N

K þ 1
for all 0 < i � K þ 1:

Equation 3 then yields

EN
0 ¼

N2

K þ 1
þ 2

N2

ðK þ 1Þ2
X

i�j
0<i;j<Kþ1

Yj

k¼i

qxk
:

1.2: an asymptotic bound

We now analyse an asymptotic bound for EN
0 . Define the

‘drawdown’ R of the random-walk process as the max-

imal element of A, i.e.

R ¼ max
i�j

0<i;j<Kþ1

Yj

k¼i

qxk
:

We want to find bounds on EN
0 in terms of R. Clearly,

maxðN; 2RÞ � EN
0 � N2R. In fact, as we shall now see,

EN
0 � N2 1þR

2

� �
and this bound is in some sense asymp-

totically sharp. We first consider the case where R > 1

and analyse the quadratic form V ¢AV obtained above. Fix

all K values qi 6¼ 1 as given, but allow Y ¼
(y1, y2,…, yK+1) ¼ (1/N)(n1, n2,…, nK+1) to vary in its

feasible set FSN ¼ {(y1, y2,…,yK+1)|yi ‡ 0, Ryi ¼ 1,Nyi pos-

itive integers}, a subset of FS¥ ¼ {(y1, y2,…,yK+1)|yi ‡ 0,

Ryi ¼ 1}. Then max
Y2FSN

ðY 0AY Þ � max
Y2FS1

ðY 0AYÞ, and the two

are close to each other if K > N.

Claim: max
Y2FS1

ðY 0AYÞ ¼ 1þR
2
:

Proof:

1 For qi < 1, fix all yj except yi and yi+1 and fix yi + yi+1 ¼
T. Then Y¢AY is a convex quadratic function of yi so one

of yi and yi+1 should be zero. This means that all qi < 1

should ‘collapse’ (i.e. be at distance zero) to a

neighbouring qj > 1. Furthermore, all qi < 1 left of

the leftmost qj > 1 (be that at j0) collapse to location

zero and all qi < 1 to the right of the rightmost qj > 1

(be that at j1)collapse to location N.

2 This leaves us with a reduced matrix Â of size

ðK̂ þ 1Þ � ðK̂ þ 1Þ; K̂ � K, with qi > 1 for all

0 < i � K̂. We claim that maxðŶ 0ÂŶÞ is achieved by

collapsing all q’s from j0 to j1 into one point in the

exact middle. This will give

1
2

1
2

� � 1 R

R 1

� �
1
2
1
2

� �
¼ 1þ R

2
:

Suppose that max
Ŷ
ðŶ 0ÂŶ Þ is achieved at a vector

ðy1; y2; . . . ; yK̂þ1Þ with yi > 0 for each i ¼ 1; 2; . . . ; K̂ þ 1.

Then this vector must achieve a zero of the deriv-

ative of the Lagrangian Ŷ 0ÂŶ � kð10Ŷ � 1Þ, yielding

Ŷ ¼ C � Â�11. But if

Â ¼

1 q1 q1q2 � � �
q1 1 q2 � � �

q1q2 q2 1 � � �
..
. . .

. ..
.

� � � qK̂ 1

0
BBBBB@

1
CCCCCA

then Â�1 is a symmetric tridiagonal matrix with

Â�1ð1; 1Þ ¼ �1

q2
1 � 1

; Â�1ðK̂ þ 1; K̂ þ 1Þ ¼ �1

q2
K � 1

;

Â�1ði; iÞ ¼ �ð1þ 1

q2
i�1 � 1

þ �1

q2
i � 1

for all 1 < i � K̂

and

Â�1ði; iþ 1Þ ¼ Â�1ðiþ 1; iÞ ¼ qi

q2
i � 1

for all 1 < i � K̂:

A ¼

1 qx1
qx1

qx2
qx1

qx2
qx3

qx1
qx2

qx3
qx4

� � �
QK

k¼1 qxk

qx1
1 qx2

qx2
qx3

qx2
qx3

qx4
� � �

QK
k¼2 qxk

qx1
qx2

qx2
1 qx3

qx3
qx4

� � �
QK

k¼3 qxk

qx1
qx2

qx3
qx2

qx3
qx3

1 qx4
� � �

QK
k¼4 qxk

..

. . .
. ..

.

QK
k¼1 qxk

QK
k¼2 qxk

QK
k¼3 qxk

� � � qxK�1
qxK

qxK
1

0
BBBBBBBB@

1
CCCCCCCCA
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So

ðÂ�11Þð1Þ ¼ Â�1ð1; 1Þ þ Â�1ð1; 2Þ ¼ �1

q2
1 � 1

þ q1

q2
1 � 1

> 0;

ðÂ�11ÞðK̂ þ 1Þ ¼ Â�1ðK̂ þ 1; K̂Þ þ Â�1ðK̂ þ 1; K̂ þ 1Þ

¼ qK̂

q2
K̂
� 1
þ �1

q2
K � 1

> 0;

but

ðÂ�11ÞðiÞ ¼ Â�1ði; i� 1Þ þ Â�1ði; iÞ þ Â�1ði; iþ 1Þ

¼ qi�1

q2
i�1 � 1

� 1þ 1

q2
i�1 � 1

þ 1

q2
i � 1

� �

þ qi

q2
i � 1

< 0 for all 1 < i < K̂ þ 1:

As we see, K̂ ¼ 1 is the only feasible value and the

problem reduces to

y1 1� y1ð Þ 1 R

R 1

� �
y1

1� y1

� �
¼ 1þ 2ðR� 1Þy1ð1� y1Þ;

which for R > 1 has a maximum at y1 ¼ 1/2, as claimed.

In the case of R ¼ 1, let all qi < 1 stick to 0 or N as

before. We obtain a flat environment, for which

EN
0 ¼ N2.

So, the final answer is

EN
0 � N2 1þ R

2

� �

and this is asymptotically sharp in the sense above,

where K > N. Hence, R is the critical factor determining

the passage time in a given landscape.

Supplementary Material

The following supplementary material is available for this

article online:

Appendix S1: Mean first-passage times of a multi-

dimensional random walk in an arbitrary environ-

ment

Appendix S2: Methods

This material is available as part of the online article

from http://www.blackwell-synergy.com
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