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Genetic robustness, the invariance of the phenotype in the face of
genetic perturbations, can endow the organism with reduced
susceptibility to mutations. A large body of work in recent years
has focused on the origins, mechanisms, and consequences of
robustness in a wide range of biological systems. Despite the
apparent prevalence of mutational robustness in nature, however,
its evolutionary origins are still unclear. Does robustness evolve
directly by natural selection or is it merely a correlated byproduct
of other phenotypic traits? By examining microRNA (miRNA) genes
of several eukaryotic species, we show that the structure of miRNA
precursor stem-loops exhibits a significantly high level of muta-
tional robustness in comparison with random RNA sequences with
similar stem-loop structures. Hence, this excess robustness of
miRNA goes beyond the intrinsic robustness of the stem-loop
hairpin structure. Furthermore, we show that it is not the byprod-
uct of a base composition bias or of thermodynamic stability. These
findings suggest that the excess robustness of miRNA stem-loops
is the result of direct evolutionary pressure toward increased
robustness. We further demonstrate that this adaptive robustness
evolves to compensate for structures with low intrinsic robustness.

enetic robustness, the preservation of an optimal phenotype
facing genetic mutations, is a fundamental property of living
systems incorporated at various levels of biological complexes
(1). Protein tolerance to amino acid substitutions (2), gene
dispensability in yeast (3), and the error tolerance of complex
biological networks (4) are just a few examples. Yet, despite the
plethora of observations of genetic robustness, its evolutionary
origins are less obvious. In a recent review of the debate
concerning the evolutionary origins of robustness, de Visser et al.
(1) have grouped the theories addressing the evolution of genetic
robustness into three main classes: (i) adaptive, wherein robust-
ness is favored by natural selection and hence evolves directly;
(#i) intrinsic, suggesting that robustness is a nonadaptive corre-
lated byproduct of some other phenotypic traits; and (iii) con-
gruent, conjecturing a correlation between environmental and
genetic robustness and in which genetic robustness is the side
effect of the evolution toward environmental robustness. To
date, however, the extent to which each of these evolutionary
forces contributes to the evolution of robustness remains unre-
solved, which is partly because providing evidence for the
evolution of adaptive robustness, i.e., robustness that is the direct
product of the evolutionary process and not a correlated out-
come of other phenotypic properties, is a challenging task.
Addressing this challenge, several studies in recent years have
resorted to theoretical analyses and computer simulations, ex-
amining the evolutionary origins of genetic robustness. These
studies examine a wide range of mechanisms and aspects of
robustness, including redundancy and fragility (5), duplicate
genes and alternative pathways (6, 7), complex networks struc-
ture (4), and dominance (8). Some of these studies have focused
on increased neutrality (i.e., a higher than chance frequency of
one mutant neighbors that preserve the phenotype) as a simple
manifestation of genetic robustness. Although increased neu-
trality may lack some of the complex features characterizing
other mechanisms of robustness, it forms an ideal model for
studying the evolutionary origins, properties, and effects of
robustness (see also Discussion). By using mathematical model-
ing, it has been shown that populations percolating across wide
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neutral networks (9) tend to concentrate on highly neutral
regions of the genotypic space (and hence, give rise to mutational
robustness) as a consequence of neutral evolution dynamics (10).
This model can account for the direct evolution of robustness
even without explicit selection pressures favoring robust indi-
viduals. The emergence of increased neutrality through evolu-
tion was also demonstrated in computer simulations (11, 12).

Yet, evidence for the evolutionary origins of mutational
robustness in natural biological systems has been difficult to
obtain. In a recent study, Montville e al. (13) have demonstrated
an increased mutational robustness in RNA viruses that were
experimentally evolved in low vs. high coinfection, suggesting
that coinfection and complementation can serve as an alterna-
tive mechanism for buffering deleterious mutations. However, it
is more likely that the observed difference in this study stems
from the loss of mutational robustness due to weakened selec-
tion pressures rather than a direct evolution of robustness.
Another approach to inferring the evolution of robustness is the
use of a plausible background model, allowing evaluation of the
significance of any excess robustness found in the WT (1). One
important effort to provide such evidence has focused on the
mutational robustness of conserved secondary structure RNA
elements in a viral genome by using a random sample of
nonconserved elements from the same genome as a reference set
(14). It was shown that conserved elements are consistently more
robust than nonconserved elements. Other studies, focusing on
the thermodynamic stability of noncoding RNA secondary
structures (which confers environmental robustness) have used
sequence shuffling to generate a reference set (e.g., refs. 15-18).
These studies provide valuable support for the evolution of
robustness in natural systems, however, because the reference
sets used in these studies do not preserve the structural pheno-
type of the native elements, and because certain secondary
structures are inherently more robust than others, it cannot be
determined whether the observed increase in robustness evolved
independently or is a correlated side effect of the evolution of
specific, functionally important, structures. To provide evidence
that the genetic robustness of the WT is the outcome of direct
evolution toward robustness, it is essential to demonstrate that
the WT is significantly more robust than other, phenotypically
similar, genetic configurations. Such a background model can be
constructed for microRNAs (miRNAs), allowing to carefully
control for the effects of secondary structure evolution.

We study the genetic robustness of miRNAs, small endoge-
nous noncoding RNAs that regulate the expression of protein-
coding genes in animal and plants via miRNA cleavage or
translational repression (19-22). The short mature miRNAs
(=22 nt) originate from longer RNA precursor molecules that
fold into a stem—loop hairpin structure (23, 24). The secondary
structure of miRNA stem-loops embodies a combination of
three features that makes it a particularly suitable test bed for
studying the evolution of genetic robustness: (i) Serving a crucial
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Neutrality and rank distributions for all 1,120 miRNAs genes included in the analysis. (a) Neutrality value distribution for native stem-loops (nm) and

for the corresponding inversely folded stem-loops (). On average, the neutrality of a native stem—loop is 0.96 =+ 0.03, whereas that of the inversely folded
sequence is 0.93 + 0.03. Evidently, native miRNA stem-loops possess higher neutrality values than random sequences with identical structures (p < 107137;
Wilcoxon’s signed rank test for paired data). The neutrality distribution of shuffled sequences (n,) is also illustrated, providing an estimate for the baseline
neutrality level (average neutrality 0.83 =+ 0.02). (b) The distribution of miRNA neutrality ranks, r. Each miRNA stem-loop neutrality value is ranked among the
neutrality value of 1,000 matching inversely folded stem-loops. High ranking miRNA genes (r = 50) correspond to significantly robust stem-loops.

role in the miRNA gene maturation process (23), the stem-loop
structure has been under evolutionary pressures to conserve its
structure. Such stabilizing pressures favor robust configurations
and may have led to the evolution of robustness. (if) Unlike most
genotype-phenotype mappings, the RNA secondary structure is
fully tractable through secondary structure prediction algo-
rithms (e.g., ref. 25). These algorithms provide a simple measure
of the structural robustness of a given miRNA stem-loop
sequence by comparing the predicted structure of this sequence
with the predicted structure of all its one-mutant neighbors. And
(iii) by using inverse folding algorithms (26), a reference set of
random RNA sequences with the same structure as the native
precursor sequence can be produced, providing a natural back-
ground model to evaluate the level of genetic robustness ex-
pected by chance (see also refs. 11, 27, and 28). Comparing the
structural neutrality of an evolved miRNA stem-loop with that
of random sequences that perfectly preserve the stem-loop
structural phenotype excludes from the analysis the intrinsic
robustness associated with the (potentially more robust) hairpin
structure and can confirm that the increase robustness is the
product of direct evolution toward robustness.

Results

Examining the neutrality of all miRNA stem-loops included
in the analysis, 1,016 of 1,120 (90.7%) were found to be robust
(Mm > me ie., they were more robust than random RNA
sequences having an identical secondary structure; see Materials
and Methods). The increased neutrality of the native miRNA

stem—loops was also evident from the different distributions of
neutrality values in native vs. inversely folded stem-loops (Fig.
la). Although the difference between the mean neutralities of
native and inversely folded sequences was relatively small (0.96
vs. 0.93 respectively), the two distributions were significantly
different (p < 107137; Wilcoxon’s signed rank test for paired
data), corroborating the hypothesis that evolved miRNA stem-—
loops are more robust than expected by chance. Examining the
robustness of miRNA genes within species (Table 1) provided a
similar picture for each species separately. The level of the
increased neutrality of each miRNA was evaluated by its neu-
trality rank, r (i.e., the rank of the native stem-loop neutrality
value among the neutrality values of 1,000 inversely folded
sequences; see Materials and Methods). Examining the distribu-
tion of ranks across all miRNA genes, a marked propensity
toward high ranks (and hence, increased neutrality) was dem-
onstrated (Fig. 1b). A total of 185 genes were found to be
significantly robust (r = 50), whereas only 15 genes are signif-
icantly nonrobust (» = 951). The high number of significantly
robust genes and low number of significantly nonrobust genes
further support the robustness of evolved miRNA stem-loops
(p < 107% and p < 10719, respectively). See also Table 2 for a
list of the most robust genes.

Considering the slow, second-order dynamics leading to the
evolution of adaptive robustness (14), we quantified the ratio
between the adaptive robustness of miRNAs (measured by the
difference between the neutrality of miRNA stem-loops and
inversely folded stem-loops) and its intrinsic robustness (the

Table 1. Robustness analysis of miRNA stem-loop structures within each taxa

Species No. of miRNAs No. of robust miRNAs (%) p Nm M

C. elegans 115 105 (91.3) 3.5x 107 0.960 0.922
C. briggsae 76 72 (94.7) 7.9 X 10712 0.967 0.928
D. melanogaster 78 73 (93.6) 3.3 X 10" 0.962 0.930
D. pseudoobscura 73 67 (91.8) 3.2x 101 0.965 0.932
D. rerio 30 25 (83.3) 1.1 X 10703 0.947 0.928
G. gallus 120 115 (95.8) 6.4 X 10720 0.968 0.941
M. musculus 223 198 (88.8) 2.2 X 10°27 0.963 0.939
R. norvegicus 185 167 (90.3) 1.8 X 10722 0.960 0.937
H. sapiens 220 194 (88.2) 7.0 X 10=2° 0.963 0.938

p values denote the probability of observing the increased neutrality found in each species by chance and are
calculated with the Wilcoxon signed rank test for paired data.
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Table 2. A list of the most significantly robust miRNA genes

miRNA genes m r P

cel-mir-357 0.989 1 0.001
cel-mir-86 0.984 1 0.001
cel-mir-56 0.977 1 0.001
cbr-mir-239a 0.985 2 0.002
dre-mir-181b-2 0.985 2 0.002
dme-mir-125 0.978 2 0.002
dps-mir-13b-2 0.982 3 0.003
dps-mir-9b 0.986 3 0.003
gga-mir-181b-2 0.987 3 0.003
rno-mir-31 0.979 3 0.003
cbr-mir-250 0.979 3 0.003
cel-mir-252 0.981 3 0.003
dre-mir-213 0.979 4 0.004
dps-mir-125 0.978 4 0.004
cbr-mir-34 0.972 4 0.004
mmu-mir-24-1 0.981 4 0.004
dps-mir-276b 0.976 5 0.005
rno-mir-213 0.981 5 0.005
cbr-mir-252 0.978 5 0.005
hsa-mir-132 0.984 5 0.005
hsa-mir-213 0.978 5 0.005
hsa-mir-147 0.976 5 0.005
mmu-mir-126 0.983 5 0.005
cel-mir-358 0.978 6 0.006
mmu-mir-181b-1 0.987 6 0.006
dme-mir-275 0.986 6 0.006
cel-mir-253 0.980 6 0.006
cel-mir-34 0.974 6 0.006

See Data Set 1, which is published as supporting information on the PNAS
web site, for the full list.

robustness associated with the specific secondary structure of
miRNAs). To this end, we measured the neutrality of shuffled
miRNA sequences (see Materials and Methods). The difference
between the neutrality of this set and the average neutrality of
the inversely folded sequences provided an estimate for the
neutrality arising from the miRNA-specific structure. The
values obtained were 0.03 = 0.04 for the adaptive robustness
(i.e., Mm — mc) and 0.11 = 0.04 for the intrinsic robustness
(me — ms). Hence, although most of the neutrality observed in
miRNAs could be attributed to the intrinsic robustness of hairpin
structures, the adaptive robustness was still of the same order of
magnitude. Interestingly, the adaptive robustness (nm — nc) was
negatively correlated (Pearson’s correlation coefficient, —0.573;
p < 107%) with the structure intrinsic robustness (n. — ms),
suggesting that increased selective pressure for robustness is
exerted by evolution to compensate for miRNAs with relatively
low structural intrinsic robustness.

To demonstrate the difference between robust miRNAs and
the corresponding inversely folded stem—loops, the one mutant
neighborhood of a specific significantly robust miRNA gene
(cel-mir-357) was examined in detail (Fig. 2). Evidently, the
secondary structures’ repertoire that can be found in the genetic
neighborhood of the native stem—loop consisted entirely of
hairpin structures with few differences from the original hairpin
structure (Fig. 2a). The genetic neighborhood of a correspond-
ing inversely folded stem-loop (having an identical secondary
structure) included a variety of numerous structures noticeably
different from the original stem-loop (Fig. 2b). Considering the
crucial role of the hairpin structure in the miRNA gene biogen-
esis, the different composition of the two secondary structure
ensembles exemplifies the adaptive value of the capacity to
buffer single-point mutations.

Borenstein and Ruppin

To further corroborate that the observed excess robustness
indeed stems from direct evolution toward robustness and not from
other origins, two additional alternative hypotheses were examined.
First, because the mononucleotide and dinucleotide frequencies of
an RNA sequence (which are not preserved in the reference set)
affect the physical stability of the secondary structure (29), it is
important to verify that the increased neutrality observed is not a
byproduct of a bias in the base composition of the native stem—loops
compared with the sequences generated by the inverse folding
algorithm. To this end, we examined a subset of miRNA genes from
four taxa, comparing the neutrality of the miRNA stem-loop with
the neutrality of a new reference set that preserves not only the
secondary structure but also the dinucleotide base composition (see
Materials and Methods). It was shown (Fig. 3a) that the native
sequences were significantly robust also in comparison to this
reference set (p < 1073% Wilcoxon’s signed rank test for paired
data). An additional set of experiments, using an indirect (but
computationally more tractable) approach to examine the potential
effect of base composition on neutrality, was applied to all miRNAs
in our analysis, further corroborating that the observed robustness
of miRNA cannot be attributed to miRNAs’ base composition bias
(see Supporting Text, which is published as supporting information
on the PNAS web site).

A second alternative hypothesis may posit that the increased
mutational robustness described above arises from the increased
thermodynamic stability of miRNAs, reported recently by Bon-
netet al. (18), due to the correlation between the thermodynamic
stability of RNA secondary structure and its neutrality (28).
Accordingly, genetic robustness has evolved as a correlated side
effect of environmental robustness. Such congruent evolution of
robustness was demonstrated in a computer simulation of RNA
evolution (11), wherein genetic canalization occurs concurrently
with environmental canalization. However, reexamining the
thermodynamic stability of miRNAs in an analogous manner to
Bonnet et al. (18) but using a background model based on
inversely folded sequences rather than the shuffled sequences
used in the original study, we found that most of the statistical
effect originally demonstrated vanishes (Fig. 3b and compare
with figure 2 in ref. 18). Evidently, the significantly low folding
energies originally found can be attributed mostly to the overall
stability of the hairpin structure and are not a specific feature of
miRNA precursors. Although the genetic robustness of miRNAs
was still weakly correlated with their thermodynamic stability
under this background model (Pearson’s correlation coefficient,
0.24), most of the significantly robust genes (86%) did not exhibit
significant thermodynamic stability.

Finally, to study the relationship between the functional
importance of miRNA genes and robustness, we used miRNA
family annotation to detect robustness-enriched miRNA families
(see Materials and Methods). Families mir-7, mir-135, and mir-10
were found to be robustness-enriched (p < 0.003, p < 0.009, and
p < 0.003, respectively). Unfortunately, because of the current
lack of information concerning miRNA functionality, we could
not verify that these miRNA families were indeed participating
in essential processes.

Discussion

Focusing on the mutational robustness of the miRNA stem-loop
structure and addressing the longstanding debate concerning the
evolutionary forces underlying genetic robustness, this study pro-
vides evidence for direct evolution of increased robustness in
miRNAs. Although it is difficult to completely rule out alternative
hypotheses, the carefully controlled background model that pre-
serves the most relevant phenotype (namely, the secondary struc-
ture) and the statistical analysis of the results strongly support the
hypothesis of direct evolution of robustness. Although it was shown
that most of the mutational robustness of miRNA stem-loops
results from the intrinsic mutational stability of hairpin structures,
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Fig. 2. The one-mutant neighborhood structure composition for a robust native stem-loop (cel-MIR-357) and for a corresponding inversely folded reference
stem-loop. The entire collection of structures that compose the one-mutant neighborhood is represented on the circle’s circumference. Each gray arc segment
corresponds to one of the structures that can be found in the collection. The length of the arc segment represents the frequency of this structure among the
3L (L = 110, in this case) mutants. The segment’s distance from the thin black circle corresponds to the structure’s base pair distance, d, from the original structure
(illustrated in the center of the circle). Some of the structures in the collection are also illustrated next to the appropriate distance value. (a) The one-mutant
neighborhood of cel-MIR-357 includes 80 different structures. Three hundred and twenty-six of 330 mutants have a base-pair distance <10. The average distance
is 1.248. (b) The one-mutant neighborhood of an identical, inversely folded, reference stem-loop includes 146 different structures. Only 123 mutants have a
base-pair distance <10. The average distance is 37.076.

the significant excess neutrality found in comparison to random,
inversely folded, identical hairpin structures can only be the product
of direct evolution toward robustness. Furthermore, the negative
correlation between intrinsic and adaptive robustness found in our
analysis exemplifies intriguing evolutionary dynamics wherein
adaptive robustness evolves to compensate for stem—loop structures
with low intrinsic robustness.

One potential caveat of our findings stems from the assump-
tion that each RNA molecule maps into a fixed structure
predicted by the RNA minimum free-energy folding algorithm.
This simple-minded static representation of molecules is neces-
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sary for the computational derivation of neutrality values in our
analysis. In reality, however, molecules may confer function by
a dynamical, local reconfiguration of structure (e.g., refs. 30 and
31). The excess robustness observed in this study may be, at least
in part, the outcome of an evolutionary pressure toward a
functioning set of vibrational modes. We believe that such
molecule vibrational dynamics pose an exciting and profound
challenge to further research concerning the detection, evolu-
tion, and definition of mutational robustness.

Many miRNA (and other, functional noncoding RNAs) predic-
tion algorithms are partially based on detecting conserved second-

Number of miRNAs
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r

Fig.3. Rulingout alternative hypotheses for the origins of genetic robustness. (a) The distribution of the neutrality rank, r, within a reference set that preserves

also the dinucleotide base composition. As before, high ranks correspond to significantly robust genes. Of 211 genes that have been analyzed here, 194 are robust
(nm > mc) and 72 are significantly robust (r = 50), indicating that the observed robustness of miRNAs cannot be attributed to base composition bias. (b) The
distribution of the rank, r, for thermodynamic stability (as manifested by a lower than chance minimum folding energy) under the inversely folded background
model. In contrast to the results presented by Bonnet et al. (18) where >90% of the genes have significantly increase thermodynamic stability (P < 0.05), applying
a background model that preserves the secondary structure results in only 12% of all miRNA genes with significantly increased thermodynamic stability levels.
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ary structure regions across multiple aligned genomes (e.g., see refs.
32-37). Significantly increased neutrality may also facilitate im-
proved miRNA prediction on a single genome. Although the signal
produced by increased neutrality calculation is probably not suffi-
cient by itself to predict miRNA stem-loops, it can serve well as a
complementary method to filter out random hairpin structures.

Finally, as miRNA stem-loop’s secondary structure embodies
many of the properties controlling molecular evolution, it forms a
promising framework for studying central issues concerning the
evolution of robustness. To some extent, the increased neutrality of
miRNAs examined in this study can be conceived as first-order
robustness, based only on the gene sequence and the physical
properties that map sequence to structure. The simplicity of this
form of robustness and the full tractability of RNA secondary
structure facilitate the analysis of its evolutionary origins. Protein
structures, being the next step up in complexity, may possess a
similar tendency for sequence-based increased neutrality as well as
additional mechanisms (e.g., molecular chaperones) contributing to
their functional robustness. The effect of these mechanisms on the
selection pressures toward sequence-based robustness is especially
interesting. Once a better understanding and accurate prediction
algorithms for protein folding are available, our methodology for
robustness analysis can be applied to confirm that the observed
protein-structure tolerance to amino acid substitutions (2) is higher
than expected by chance. Other forms of robustness may be the
product of second-order mechanisms, actively promoting robust-
ness through alternative developmental pathways, error-repair, or
phenotypic plasticity. The direct selection pressures toward in-
creased robustness exemplified in this study may account, at least
in part, for the abundance of biologically robust systems and the rich
variety of mechanisms that underlie them.

Materials and Methods

miRNA Data and RNA Folding. miRNA precursor sequences were
downloaded from the miRNA registry database, release 5.1 (38).
All available miRNA genes of nine Metazoa species (Caenorhab-
ditis elegans, Caenorhabditis briggsae, Drosophila melanogaster, Dro-
sophila pseudoobscura, Danio rerio, Gallus gallus, Mus musculus,
Rattus norvegicus, and Homo sapiens) were used. A small number
of genes (9) were excluded from the analysis because of repeated
failures of the inverse folding algorithm to produce random se-
quences with the same structure. Overall, a total of 1,120 miRNAs
from the above taxa are included in the analysis. miRNA families
annotation is based on the Rfam database (39). Secondary struc-
tures were determined with Zuker’s minimum free-energy algo-
rithm (25), implemented by the VIENNA RNA package, version 1.4
(26), which also supports sequence generation through inverse
folding. A computer cluster of ~100 Linux machines was used to
perform the intensive computation.

Neutrality Calculation. The neutrality, n, of an RNA sequence of
length, L, is defined as n = ((L — d)/L), where d is the base-pair
distance between the secondary structure of the original sequence
and the secondary structure of the mutant, averaged over all 3L
one-mutant neighbors. The base-pair distance measures the dis-
similarity between two structures as the number of closed pairs that
are present in only one of the two structures (i.e., the number of
pairs that should be opened or closed to transform one structure to
the other) (28). n thus represents the average fraction of the
structure that remains unchanged after a mutation occurs. An
alternative and more strict definition of neutrality, one that does not
assume any structure distance metric, has also been examined,
wherein 7 is simply defined as the fraction of the 3L one-mutant
neighbors that perfectly preserves the original structure. Applying
this measure of neutrality yields qualitatively similar results.

Robustness and Significance Analysis. For cach miRNA, we measure
the neutrality of the native stem-loop, mm, and evaluate the

Borenstein and Ruppin

neutrality of this stem-loop structure expected by chance, 7, as the
average neutrality of 1,000 “random” sequences that fold into an
identical stem-loop structure (generated by the inverse folding
algorithm). Note that although all of the miRNA precursors fold
into a hairpin shape structure, the exact secondary structure is
specific to each miRNA. An inversely folded random reference set
is thus generated separately for each miRNA to perfectly retain the
structural phenotype of the control. A miRNA gene is defined as
robust if n, > m.. To determine whether the increased robustness
observed for a group of genes (e.g., a specific species or miRNA
family) is statistically significant, the magnitude and sign of the
differences between the paired values 1, and 7 obtained for these
genes are analyzed by the nonparametric Wilcoxon signed rank test
for paired data. To further evaluate the level of the increased
neutrality for each miRNA separately, the rank of the native
stem-loop neutrality, r, among the neutrality of the 1,000 inversely
folded sequences is also calculated. Such an order statistics measure
does not entail any assumption on the nature of neutrality value
distribution. The significance level of each miRNA robustness is
then defined as p = ﬁ, providing a good estimate for the
probability of observing an equal or higher neutrality value by
chance (see also ref. 18). miRNAs for which » = 50 (corresponding
to p < 0.05) are labeled as significantly robust. The number of
significantly robust genes is evaluated in comparison with a null
hypothesis of uniformly distributed ranks through a binomial
cumulative distribution function.

miRNA Hairpin Structure Intrinsic Neutrality. To quantify the level of
the miRNA neutrality that stems intrinsically from the miRNA
hairpin structure (as opposed to neutrality resulting from direct
selection toward robustness measured above), an additional refer-
ence set is produced for each stem-loop. This set consists of 100
shuffled sequences produced by the dinucleotide shuffle algorithm
(15), maintaining the miRNA stem-loop mononucleotide and
dinucleotide frequencies. The average neutrality of this set is used
as a baseline neutrality value to evaluate the level of excess
neutrality associated with the miRNAs hairpin structures.

Testing for Base Composition Bias Effects. To rule out the effect of
base composition bias on neutrality, we compare the neutrality of
the native stem-loops with that of inversely folded stem-loops that
also maintain a similar base composition. To this end, inversely
folded sequences are produced and filtered, leaving only those
sequences with a similar dinucleotide base composition. The dis-
tance between the base composition of the original sequence and
that of the inversely folded sequence is measured by Jensen—
Shannon divergence (40), a symmetric version of Kullback-Leibler
distance (41). Only inversely folded sequences for which Jensen—
Shannon divergence <(0.01 are included in this reference set.
Because of the high computational costs associated with the
filtering process, we have applied this method to a subset containing
211 miRNAs from four taxa (Caenorhabditis elegans, Caenorhab-
ditis briggsae, Drosophila melanogaster, and Homo sapiens), gener-
ating a reference set of 100 sequences for each gene.

Robustness-Enriched miRNA Families. For each miRNA family in-
cluding =10 genes in our analysis, the average rank of the family
members is compared with the average rank obtained for 100,000
random groups comprising of the same number of genes selected
uniformly from the database. miRNA families for which <0.01 of
the random groups obtained a higher average rank are defined as
robustness enriched families.
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