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ABSTRACT

Summary: NetCmpt is a tool for calculating the competitive
potential between pairs of bacterial species. The score describes
the effective metabolic overlap (EMO) between two species, derived
from analyzing the topology of the corresponding metabolic models.
NetCmpt is based on the EMO algorithm, developed and validated in
previous studies. It takes as input lists of species-specific enzymatic
reactions (EC numbers) and generates a matrix of the potential
competition scores between all pairwise combinations.
Availability and implementation: NetCmpt is provided as both
a web tool and a software package, designed for the use of
non-computational biologists. The NetCmpt web tool, software,
examples, and documentation are freely available online at http://
app.agri.gov.il/shiri/NetComp.php.
Contact: anat.kreimer@gmail.com; shiri.freilich@gmail.com
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The availability of many fully sequenced genomes together
with several generic metabolic schemes allows the systematic
reconstruction of the metabolic networks of hundreds of species
across the tree of life (Kanehisa and Goto, 2000). Analyses
of the structure and topology of such genome-scale metabolic
networks enabled, despite ignoring thermodynamic properties,
various systematic, cross-species, studies of lifestyle and evolution
in the microbial world (Freilich et al., 2008; Kreimer et al.,
2008; Papp et al., 2011). Beyond studying various aspects of
genome evolution, such metabolic-driven approaches allow further
processing genomic information into ecological information by
using the topological structure of the network for predicting the
biochemical composition of species’environment. (Borenstein et al.,
2008; Handorf et al., 2008). Such ‘Reverse Ecology’ approaches
predict the set of nutrients a species extract from its environment,
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providing a proxy for its habitat. The recently published NetSeed
web tool allows to freely calculate the environments of the selected
input species (Carr and Borenstein, 2012).

On top of predicting the species’-specific biochemical habitat,
the systematic inference of biochemical habitats together with
the availability of a large collection of species-specific metabolic
networks, enabled the conductance of several studies indicating
that computational, systems-biology, approaches can be applied to
study microbial ecology (Borenstein and Feldman, 2009; Freilich
et al., 2010a, b; Janga and Babu, 2008; Klitgord and Segre,
2011). In particular, network-driven approaches allow studying
the complex set of interactions microbes form with other species
thriving in similar habitats (Freilich et al., 2010a, b, 2011). Notably,
within a community of bacterial species sharing limited resources,
competitive and cooperative interactions are to a large extent derived
by metabolism. Accordingly, a growing number of studies testify for
the ability of metabolic-driven computational approaches to describe
the metabolic interaction between two species (Klitgord and Segre,
2010, 2011; Stolyar et al., 2007; Wintermute and Silver, 2010).
The effective metabolic overlap (EMO) score was introduced by
Freilich et al. (2010a, b), providing a systematic approach for the
quantification of the level of competition between bacterial species
through the processing of genomic-driven, metabolic information.
Several lines of evidence point at the ecological relevance of the
EMO score as a tool for predicting the metabolic competitive
potential between bacterial species [(Freilich et al., 2010a, b) and
Supplementary Note 1]. Based on the EMO algorithm, here we
provide NetCmpt—a publically available, easy to use, tool, for
computing the competitive potential between selected input species.
Notably, the EMO score is solely aimed at the metabolic dimension
while putting aside other aspects and mechanisms of inter-species
competition.

The rapid increase in the number of metagenomic projects
and whole-community analysis techniques highlights the need
for accessible tools allowing delineating the web of interactions
in a given environment (Chaffron et al., 2010; Dutilh et al.,
2009; Pignatelli et al., 2008). NetCmpt, the first free tool for
calculating inter-species competition, is available online as a web
tool and software package at http://app.agri.gov.il/shiri/NetComp.
php. The relevance of the NetCmpt tool for analyzing data derived
from metagenomic data was verified through simulations using
incomplete datasets (Supplementary Note 2).
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Fig. 1. An illustrative figure of the EMO algorithm implemented in the
NetCmpt tool. In this example, the pair-specific environment of species A
and B is composed of metabolite α. EMO score denotes 1 minus the fraction
of produced essential metabolites. Species B cannot produce any of its target
metabolites leading to an EMO score 1. Species A can produce half of its
target metabolites leading to an EMO score 0.5. The metabolic environment
Species C is composed solely of non-overlapping metabolites, hence species
C is not metabolically affected by the presence of the other species

2 DESIGN AND IMPLEMENTATION

2.1 General description of the EMO algorithm and its
implantation

For each input species (represented by a list of EC reactions),
we automatically reconstruct its metabolic network, its optimal
metabolic environment and a list of essential metabolites it has to
produce in order to grow (Fig. 1). Based on the above, we use
the EMO score for describing the pairwise competitive potential
between all pairwise combinations formed between input species.
Briefly, for each species-pair we simulate a pair-specific optimal
environment composed of all non-overlapping metabolites of a
given combination. That is, following computing the optimal
environment of each species individually (e.g. metabolites α and
β for species A and metabolite β for species B in Fig. 1), the
pair-specific environment is then composed solely of the species-
specific, unshared, metabolites (metabolite α in Fig. 1). Within this
constructed, pair-specific environment, we compute for each pair
member the fraction of produced target metabolites. Note that this
asymmetric procedure may provide different competition relations
between A→B and B→A, as one would intuitively expect. EMO
score denotes 1 minus the fraction of produced essential metabolites.
Competition score (EMO score) 1 indicates that two species compete
on the same resources; Competition score (EMO score) 0 indicates
that two species utilize different metabolites for growth. Overall,
the EMO score ranges from 0 to 1 and provides an estimate to
the metabolic consequences of the co-presence of species B and
A. Notably, optimal environment (as used here) allow revealing
the competitive potential between bacterial pairs, while different
settings, beyond the scope of the EMO score, can reveal other types
of interactions (Freilich et al., 2011).

2.2 Construction of species-specific metabolic networks
For each input species, the computation of its EMO score requires
information on its metabolic capacities, provided as a list of

metabolic reactions (EC numbers). The metabolic enzymes are
then mapped to reactions as in Freilich et al. (2010a, b). The
reaction representation allows mapping the enzymes into a generic
metabolic network, constructed as in Ma and Zeng (2003) where
nodes represent reactions and edges represent common metabolites.
Notably, reactions are directional, as inferred from the metabolic
scheme used in Freilich et al. (2010a, b).

The species-specific network is then derived from the generic
network, based on the species-specific reaction content. Let E1 =
{e1

1,e1
2,...,e1

n} denote the set of enzymes that catalyze reaction R1,

and E2 ={e2
1,e2

2,...,e2
m} denote the set of enzymes that catalyze

reaction R2. Then, for example, if the species is represented by
two enzymes {e1

3,e2
2} one from E1 and the other from E2 and a

product of R1 is a substrate of R2, the species directed metabolic
network would be R1 →R2. Edges in the network are considered
directed at the reaction level. Notably, frequent metabolites (that is
participating in more than 10 reactions) as well as water, protons
and electron components are removed from the generic network
(Kharchenko et al., 2005; Raymond and Segre, 2006). This graph-
based representation of metabolic reactions is a common and well
established tool in analyzing and studying metabolic networks
(Alon, 2003; Feist et al., 2009; Jeong et al., 2000; Oberhardt et al.,
2009).

2.3 Constructing a list of target metabolites and
externally consumed metabolites (simulated
metabolic environments)

To construct species-specific target metabolite lists, the set of
metabolites that each species produces is intersected with a generic
list of ‘target metabolites’ that are likely to be essential for growth in
most species (Becker and Palsson, 2005; Feist et al., 2007; Oh et al.,
2007). Metabolic growth environments are inferred using the seed
algorithm developed by (Borenstein et al., 2008) and implemented
in the NetCmpt code according to (Carr and Borenstein, 2012). This
algorithm predicts the ‘seed’—a set of all exogenously acquired
compounds, given the metabolic network. We now provide the
species-specific seed sets as part of the tool’s output.

2.4 Computing EMO
To score the metabolic consequences of the presence of species
B in the environment of species A on A’s metabolic capacities
we remove from A’s predicted growth environment (i.e. A’s seed)
all the metabolites consumed by B, simulate growth of species
A on this depleted media and quantify the fraction of essential
metabolites that A can still produce (Fig. 1). Growth simulations
were done using the expansion method (Ebenhoh et al., 2004;
Handorf et al., 2005)—an approach where networks of increasing
size are constructed starting from an initial set of externally
consumed substrates (computed as described above) by stepwise
addition of those reactions whose substrates are produced in the
current core network.

2.5 Software availability and usage
NetCmpt is available as a web tool and a software package at
http://app.agri.gov.il/shiri/NetComp.php. Extended information on
usage and construction of input file can be found in Supplementary
Note 3.
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