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Abstract

Studies of the evolution of development characterize the way in which gene regulatory dynamics during ontogeny
constructs and channels phenotypic variation. These studies have identified a number of evolutionary regularities: (1)
phenotypes occupy only a small subspace of possible phenotypes, (2) the influence of mutation is not uniform and is often
canalized, and (3) a great deal of morphological variation evolved early in the history of multicellular life. An important
implication of these studies is that diversity is largely the outcome of the evolution of gene regulation rather than the
emergence of new, structural genes. Using a simple model that considers a generic property of developmental maps—the
interaction between multiple genetic elements and the nonlinearity of gene interaction in shaping phenotypic traits—we
are able to recover many of these empirical regularities. We show that visible phenotypes represent only a small fraction of
possibilities. Epistasis ensures that phenotypes are highly clustered in morphospace and that the most frequent phenotypes
are the most similar. We perform phylogenetic analyses on an evolving, developmental model and find that species become
more alike through time, whereas higher-level grades have a tendency to diverge. Ancestral phenotypes, produced by early
developmental programs with a low level of gene interaction, are found to span a significantly greater volume of the total
phenotypic space than derived taxa. We suggest that early and late evolution have a different character that we classify into
micro- and macroevolutionary configurations. These findings complement the view of development as a key component in
the production of endless forms and highlight the crucial role of development in constraining biotic diversity and
evolutionary trajectories.
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Introduction

The tremendous diversity of shapes and forms observed in

nature is truly remarkable and yet it represents only a small

fraction of the ‘space’ of the possible. One reason for this is that the

space of possible genotypes has been incompletely sampled over

the course of the history of life on earth. If we consider the

astronomical volume of the genotypic space, then the set of all

DNA strands that were ever produced during earth history

constitute a tiny fraction of the total sequence space. Moreover,

the genotypes that have existed are the result of an evolutionary

process—descent with modification from a common ancestor—

which is a locally-delimited generative process. Phenotypic

diversity is further constrained by another process, one intrinsic

to the manufacture of adaptive varieties, the developmental

mechanisms that determine the mapping of genotypes into

phenotypes.

Development induces a non-linear and highly degenerate

mapping from gene-space to phenotype space, whereby many

genotypes produce similar (or identical) phenotypes, and concom-

itantly, ensuring that there are many phenotypes that cannot be

generated by any genotype. This arises from both neutral genetic

properties of the developmental dynamic, and from the evolution

of robustness mechanisms which seek to preserve functional

phenotypes in the face of environmental and genetic variation

[1,2]. Degeneracy has the effect of hiding genotypes from the

selective process and rendering a large portion of potential

phenotypes inaccessible. This is an architectural constraint that

limits available variation and adaptive capacity, with potentially

dramatic effects on the trajectory of the evolutionary process.

Whereas evolutionary search over the space of frequently

generated phenotypes is in strict accordance with neo-darwinian

theory (population genetics for example), the sparse distribution of

the phenotypic space has implications for large scale patterns of

evolutionary change, and this can only be appreciated through the

introduction into the evolutionary dynamic of a suitable model of

development.

Developmental mappings are generally extremely complex.

This complexity derives from a combination of hierarchical

regulation, multi-gene control, epistasis, and pleiotropy. A large

body of work examines the statistical and dynamical properties of

developmental maps in simple systems, focusing on neutrality and

neutral networks of RNA [3–5] and on gene regulatory networks

in multicellular development [6–8]. These studies have generated

interest among paleontologists inquiring into the origin and

diversification of body plans [9–11] and have lead to the
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suggestion that morphological variation is extensive early in the

history of multicellular life [9,12], that phenotypes are sparsely

distributed in the space of ‘potential’ phenotypes [13], and that

diversity is better predicted by variation in the structure of gene

regulation networks than variation in the presence and absence of

structural genes [14].

Here, we consider a very generic property of complex

developmental maps—the interaction between multiple genetic

elements and the non-linearity of gene interaction—in shaping

various aspects of a phenotype. On the mechanistic genetic level,

this is usually referred to as epistasis and pleiotropy, but the same

generic constraint principle might also apply to many other

biological mappings, ranging from the physical interactions

between amino acids in the production of protein structures, to

the interactions between tissues and their effects on gross

morphology. We wish to show that a basic geometric property

of development provides a null model able to account for the bias

and nonuniformity of phenotype distributions.

The model is constructed as a generic representation, capturing

the way multiple genetic inputs combinatorially interact to

influence multiple phenotypic traits, and does not assume

selection. One natural interpretation is that of cis-regulatory

architecture and gene interaction [14–16]. For convenience, we

use terms related to this interpretation throughout the paper. We

use the model to examine a number of statistical regularities of the

developmental map that it induces. In particular, we derive the

fraction of visible phenotypes generated during development and

the dependence of this fraction on the level of interaction between

genetic elements. We characterize the distances among visible and

frequently occurring phenotypes and the influence of development

on phylogenetic relationships. We demonstrate that many of the

empirical, developmental and paleontological regularities summa-

rized above can be recovered using this null model.

Models

Basic Model
Genotypes and phenotypes are represented as binary vectors of

lengths r and k. Generally speaking, genotypes represent the

presence/absence of r genetic elements (e.g., genes, alleles, etc.),

and phenotypes represent the presence/absence of k phenotypic

traits. An interpretation in terms of cis-regulatory dynamics posits

that genotypes represent the expression pattern of a set of r

transcription factors (TFs) and that phenotypes denote the

expression pattern of k target genes regulated by these TFs. In

this sense, genotypes and phenotypes in our model may be viewed

as representing certain aspects of the cell transcriptional state. In

the following, we refer to r as the regulatory dimension and to k as

the phenotypic dimension.

A developmental plan maps genotypes to phenotypes. We

define a developmental plan as a matrix, D, of size k6r. Each entry

in this matrix is either +1 or 21 with equal probability (using real

numbers drawn from a uniform or Gaussian distribution with

mean 0 does not qualitatively change the results presented in this

paper). Given a genotype, g!, the phenotype to which it maps is

calculated by p!~H D g!
� �

, where H denotes the heaviside

function (i.e., the unit step function centered at zero). In the

regulatory interpretation, Dij describes properties of the binding

site for transcription factor j in the promoter of gene i (Figure 1,

and see [15,17]). The heaviside function can alternatively

represent a switching mechanism, producing a signal only if

inputs exceeds a threshold value.

In the analysis presented throughout the paper, we enumerated

all 2r possible genotypes and used a fixed, randomly generated

developmental plan D to map these genotype onto the corre-

sponding 2r phenotypes. To obtain large-scale statistics for the

distribution of visible phenotypes and their relationships, we

repeated this process, using numerous developmental plans. The

distinction between a ‘structural’ part of the genome (which is

allowed to vary) and a developmental part (that remains fixed), is

motivated by our attempt to explore the implications of a given

plan on the distribution of phenotypes, and by the suggestion that

developmental plans form a mechanical basis for phylogenetic

grades [7] (see also Discussion).

Multilayered Models
Previous studies on the evolution of development, have

considered a dynamical recurrent model of gene regulation. In

these models, the resulting ‘phenotype’ (or pattern of gene

Figure 1. An illustration of the developmental model. The r
transcription factors bind to the promoters of k structural genes with
affinities given by Dij. If the net activation to a promoter exceeds a
threshold value (illustrated as a step function) the gene is expressed.
The phenotype is described by the distribution of gene expression. This
regulatory architecture corresponds to the single layered plan - See also
our analysis of a generalized, multilayered, model.
doi:10.1371/journal.pcbi.1000202.g001

Author Summary

At the very end of his On the Origin of Species, Charles
Darwin wrote, ‘‘from so simple a beginning endless forms
most beautiful and most wonderful have been, and are
being, evolved.’’ Nature truly displays a bewildering variety
of shapes and forms. Yet, with all its magnificence, this
diversity still represents only a tiny fraction of the endless
‘‘space’’ of possibilities; research on the evolution of
development has revealed that observed common mor-
phologies and body plans (or, more generally, phenotypes)
occupy only small, dense patches in the abstract
phenotypic space. In this paper, we introduce a simple
model of evolving gene regulation and show that these
empirically identified patterns can be attributed, at least in
part, to interaction between genes (epistasis) in the
developmental network. Our model further predicts that
early developmental programs with low levels of interac-
tion would span most of the variation found in extant
species. The theory presented in our paper complements
the view of development as a key component in the
production of endless forms and highlights the crucial role
of development in constraining (as well as generating)
biotic diversity.

Epistasis and Nonuniform Evolution
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expression) is fed back into the regulatory plan, until the system

reaches steady state [15,17]. These models aim to capture

multilayered plans, where the output of one layer forms the input

to the next (these recurrent models are a simple case where the

same plan is applied to each layer). By contrast, the model

described above employs a single layer architecture. To examine

the effect of such multilayered plans we extend our model by

allowing it to include multiple regulatory layers. Formally, we

define p!t~H Dt p!t{1

� �
, where t denotes the regulatory layer

number and the initial phenotype, p!0, corresponds to a given

genotype g! (as described in our original model). We iterate this

model repeatedly, starting with a collection of all possible 2r

genotypes, and record the phenotype distribution at each layer.

Partially Connected Models
Our basic model assumes a ‘fully connected’ regulatory plan,

wherein all entries in the developmental matrix D are nonzero:

every gene in the genotype affects every element in the phenotypic

vector. Previous models have considered sparser interaction plans

and examined the effect of varying the density of the regulatory

interactions. Specifically, the density of the regulatory plan has

been shown to have important effects on the consequences of gene

duplications [18], epigenetic stability [15], the evolution of

canalization [17], and robustness [19]. We therefore further

extend our model by introducing an additional parameter, c,

which denotes the density of the matrix D (i.e., the probability for

each entry in the matrix to be attributed with a nonzero value;

c = 1 corresponds to a fully connected plan), and examine its effect

on the distribution of phenotypes.

Results

Potential and Visible Phenotypes
Consider a developmental model with regulatory dimension r

and phenotypic dimension k. There are 2r genotypes which could

produce a maximum of 2r phenotypes. However, the develop-

mental plan maps several genotypes into the same phenotype

(giving rise to degeneracy), and consequently generates a much

smaller number of distinct phenotypes. We refer to the set of

phenotypes produced by a given developmental plan as visible

phenotypes, and examine the number of visible phenotypes and the

number of potential phenotypes as a function of r (Figure 2A). We

find that while the number of visible phenotypes increases with the

regulatory dimension, r, their fraction, out of the number of

potential phenotypes, rapidly declines, with around 5% of the

potential phenotypes remaining visible (Figure 2B) when r = k. In

other words, the expansion of the genotypic space, which also

promotes an expansion in the number of possible genotypic

configurations, also brings about an increased canalization,

masking the expansion in the number of new visible phenotypes.

This is further exemplified by the marginal contribution of each

genetic element (e.g., each transcription factor), measured as the

relative increase in the number of visible phenotypes obtained by

adding a new genetic element. This declines from about two-fold

for the first few elements, to less than 1.4 as r reaches k (Figure 2C).

As per the mathematical analysis below, this can be attributed to

the effect of an unbalanced sample of D entries and the

multiplicative effect of the nonuniform distribution of each

element in the phentype. Interestingly, the function describing

the fraction of visible phenotypes (Figure 2B) is sigmoidal, with the

greatest change in the fraction of visible phenotypes occurring at

regulatory dimensions on the order of half the phenotypic

dimension. Thus for smaller regulatory circuits, a large fraction

of potential phenotypes remain visible, whereas for larger

regulatory circuits, the greater fraction of the phenotypic space

is hidden and inaccessible to selection and evolutionary transfor-

mation.

Localization of the Visible Phenotypic Subspace
Having established that large regulatory networks lead to a

small number of visible phenotypes, we turn to the statistical

characteristics of the visible, phenotypic subspace. We focus on

developmental plans for which r = k (e.g., the number of TFs

matches the number of target genes). As demonstrated above,

these developmental plans produce the most restricted set of visible

phenotypes. Unless otherwise indicated, we set r = k = 14 to allow

for the complete enumeration of all genotypes. We consider the

distribution of frequency levels among the visible phenotypes. We

calculate for each phenotype j, a degeneracy level, nj, denoting the

number of different genotypes that produce it (visible phenotypes

correspond to those phenotypes for which nj.0). The distribution

of degeneracy levels fits a generalized power-law distribution

(Figure 3A), implying that there are a few very common (frequent)

phenotypes and many rare ones. These findings replicate those on

the highly nonuniform frequencies of folding geometries in the

RNA secondary structure genotype/phenotype map [20].

Are the visible phenotypes uniformly distributed across the

phenotypic space or clumped in a nonuniform, subspace of closely

related phenotypes? To answer this question, we compute the gain

function of a given developmental plan. This function describes

the distribution of Hamming distances among phenotypes (using

the average pairwise dissimilarity [21]) whose origins are

genotypes a certain Hamming distance apart. In other words,

the gain function measures how the magnitude of a perturbation

in the genotype space maps onto perturbations in the phenotype

space. The resulting gain function suggests that the developmental

plan induces a significant degree of canalization; a large

perturbation in the genotype space (measured as the Hamming

distance between the original and perturbed genotypes) produces,

on average, a significantly smaller perturbation in the phenotype

space (Figure 3B). This canalization compresses the image of the

genotypes in the phenotype space, and promotes a patchy

subspace. This property of regulatory networks has been adduced

as evidence for the incremental evolution of developmental

robustness [19].

To further characterize the patchiness of the visible, phenotypic

subspace, we calculate the distribution of pairwise Hamming

distances between visible phenotypes, this time not conditioning

on the distance between their genotypes (Figure 3C). Here we plot

the frequency distributions of pair-wise Hamming distances under

three different conditions: (1) randomly drawn phenotypes from

the space of potential phenotypes, (2) randomly drawn phenotypes

from the set of distinct, visible, phenotypes, and (3) randomly

drawn phenotypes from the set of visible phenotypes including all

occurrences of each phenotype. In other words, each distinct,

visible phenotype is sampled with a probability proportional to its

frequency. We find that the condition involving the visible

phenotypes, tends to generate phenotypes more similar than

expected by chance (random phenotype distribution). Moreover,

when controlling for frequency (the degeneracy level) of the visible

phenotypes, we find that the distribution is further skewed toward

smaller Hamming distances. This suggests that the most frequent

phenotypes span a smaller subspace than the total visible

phenotypes, and are located towards the center of the visible

phenotype set.

To examine this observation in greater detail we measure the

average Hamming distance between visible phenotypes as a

function of their frequency and represent them on a frequency-

Epistasis and Nonuniform Evolution
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rank versus distance plot. The highest ranked phenotypes are

presented as the lowest rank values. As shown in Figure 4A, the

distance between the most frequent phenotypes is significantly

smaller than the average distance (which in this case is ,6), and

increases as more visible phenotypes (with lower frequencies) are

considered. Considering the case where all the visible phenotypes

are included in this analysis, the average distance is still smaller

than that expected by chance. We find that the top 5% most

frequent phenotypes are very similar (average Hamming distance

is smaller than 4) yet cover approximately 50% of all the visible

phenotypes (4A inset). An additional illustration of this patchiness

can be observed in Figure 4B, plotting the one mutant-neighbor

network of all the visible phenotypes. Here we observe that the

nodes that represent the most frequent phenotypes tend to be

separated in most cases by a single edge.

Statistical and Numerical Analysis
While an exact mathematical derivation for the nonuniform

distribution of degeneracy levels and fraction of hidden pheno-

types is hard to obtain, we consider an approximate, statistical

approach in order to provide an intuition for their origin.

We first examine the expected statistical properties of a single

trait element. Let pj denote the jth element of the phenotype. We

consider complex, non linear mappings of the form:

pj~H D
!

j g!
� �

, where H denotes the heaviside function, D
!

j

denotes the jth row of the developmental matrix D, and g! denotes

Figure 2. Potential and visible phenotypes as a function of the regulatory dimension, r. The phenotypic dimension is set to k = 18. All
curves represent the average of 1,000 different developmental matrices. (A) The number of potential phenotypes (2r) and the number of distinct
visible phenotypes as a function of the regulatory dimension. (B) The percentage of visible phenotypes out of the potential phenotypes,
corresponding to a sigmoidal function. (C) The marginal contribution of each genetic element to the increase in the number of visible phenotypes.
Formally, if V(r) denotes the number of visible phenotypes as a function of r, then the marginal contribution is defined as V(r)/V(r21), and is evidently
linear (with slope of 20.044; least squares regression).
doi:10.1371/journal.pcbi.1000202.g002

Epistasis and Nonuniform Evolution
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a given genotype. The binary vector g!, selects elements of D
!

j for

summation. It follows that Pr(pj = 1) is the probability that the sum

of the elements in a subset of D
!

j elements is greater than zero.

Each element in D
!

j is either +1 or 21 with equal probability. Let

zj denote the number of +1 elements in D
!

j . zj follows a binomial

distribution B(r,0.5), where r is the regulatory dimension—the

number of elements in D
!

j . Let sg denote the number of nonzero

elements in the genotype g!. Pr(pj = 1) is the probability that a

subset of size sg drawn without replacement from a set of zj number

of +1 elements and r2zj number of 21 elements, contains more +1

elements than 21 elements. This probability is given by,

Pr pj~1
��r,zj ,sg

� �
~

Xmin zj ,sgð Þ

i~max tsg=2sz1,zjzsg{rð Þ
f i; r,zs,sg

� �
ð1Þ

where f denotes the hypergeometric probability mass function,

f i; N,m,nð Þ~ m

i

� �
N{m

n{i

� ��
N

n

� �
. Furthermore, since in

Figure 3. Localization of the visible phenotypic subspace. (A) A loglog plot of the distribution of degeneracy levels among visible
phenotypes. Each point denotes the expected number of distinct phenotypes with a certain degeneracy level for a given developmental plan and is
an average over 10,000 different plans. Note that the point associated with degeneracy level 0 (i.e., hidden phenotypes) is not included. These
developmental plans frequently give rise to phenotypes with degeneracy levels higher than 103, and in rare cases, higher than 103.5. Given that the
total number of genotypes is 214 a single phenotype can be produced by 6%–20% genotypes. (B) A contour plot of the gain function induced by a
given developmental plan (all developmental plans produce qualitatively similar results). The gain function, gain(dg,dp), denotes the probability that
the Hamming distance between two phenotypes is dp, given that the distance between the two genotypes that produced them is dg. (C) The
distribution of pairwise phenotypic Hamming distances among randomly selected phenotypes (not produced by a developmental plan), distinct
visible phenotypes (considering every visible phenotype only once, regardless of frequency), and visible phenotypes including all occurrences of each
phenotype. The pairwise Hamming distances between randomly selected phenotypes follows a binomial distribution, with mean distance 7 (for
phenotypes of length 14). Distinct visible phenotypes are closer to one another, with the mean distance 5.976. When weighting by the frequency of
the visible phenotypes, the distance is reduced, with a mean distance 4.607.
doi:10.1371/journal.pcbi.1000202.g003
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our model we consider all genotypes (all possible subsets of r

choose sg) to be occupied by 1 or a 0 with equal probability, we can

multiply our previous expression by the binomial probabilities for

each element of the genome, to derive an average probability for

each trait value :

Pr pj~1jr,zj

� �
~
Xr

sg~0

r

sg

� �
1

2

r

Pr pj~1jr,zj ,sg

� �
: ð2Þ

Figure 5 illustrates that Pr(pj = 1) is a sigmoidal function of zj.

If pj had been determined by only one, randomly drawn,

element of D
!

j , Pr(pj = 1) would be proportional (linearly) to the

fraction of +1 elements in D
!

j . However, since pj is determined

by a random subset, the consequences of a larger fraction of +1

elements is a combinatorial amplification. For example

consider the case where D
!

j is comprised mostly of 21’s with

only very few +1 elements. A subset of D
!

j will typically have

many more 21’s than +1’s, as there are exponentially many

more ways to choose 21 elements than the +1 elements. We

argue that this strong dependence of the phenotypic element on

the number of +1 elements in the corresponding developmental

matrix row is the source for the nonuniform distribution of

degeneracy levels.

We next consider the entire phenotypic vector, rather than a

single trait element j. Clearly, Pr(pj = 1) and Pr(pl = 1), the

probabilities of producing 1 in the jth and lth elements of the

phenotype, are not independent. When mapping a genotype to a

phenotype, we use the same columns of D (as defined by g!) to

construct the summed subset in each row. Let’s just assume that

each trait element is independent which can be stated through the

following identity:

Pr p!
� �

~ P
k

j~1
Pr pj

��r,zj

� �
, ð3Þ

where k indexes the phenotypic dimension. Note that the expected

value of zj is E(zj) = r/2 and from Equation 2 we get

Pr pj~1jr,r=2
� �

~ 1
2
. If all rows of D possess an equal number of

+1’s and 21’s we find Pr p!
� �

~ 1
2

k
for every phenotype. This

generates a uniform distribution of degeneracy levels (and no

hidden phenotypes).

Because zj is sampled from a binomial distribution the number

of +1’s in each row can diverge from r/2, and consequently, as

illustrated in Figure 5, bias the probability distribution of

phenotypes. Consider the case where several rows of the

developmental matrix have zj.r/2. The probability of producing

0’s in the phenotype elements that correspond to these rows is very

small (note again Equation 2 and the sigmoidal shape in Figure 5).

Consequently, producing phenotypes with 0’s in all these elements

is extremely unlikely (see Equation 3) and these phenotypes are

expected to be hidden.

This intuition can also help us to understand the similarity of

high frequency phenotypes and the patchiness of the visible

phenotype space. Assume that zj<r/2 only in the first and third

rows, and zj.r/2 in all others. Since the phenotypes are biased

toward 1’s in all elements apart from the first and the third, all

phenotypes of the form [–,1,–,1,1,…,1] (where ‘–’ denotes either 0

or 1) are likely to be highly degenerate and will form a dense patch

of high frequency phenotypes.

Figure 4. The average distance between the the most frequent phenotypes and the patchiness of the visible phenotypic subspace.
(A) The average Hamming distance among visible phenotypes as a function of their frequency (dots). Visible phenotypes are ranked according to
their frequency level. For each rank, we calculate the average Hamming distance between all visible phenotypes with this or higher rank. The most
abundant phenotypes are very similar. This similarity decreases as less frequent phenotypes are included in the analysis. We also calculate which
fraction of all visible phenotypes are included in these phenotypes (solid line). The inset shows a zoom of the same plot, focusing only on the top 5%
most frequent phenotypes. The phenotypes that are included in this small fraction of the distinct visible phenotypes, are, on average, only 4 bits
different, and still cover 50% of the phenotypes. (B) The one mutant neighbor network of the visible phenotypes. The size of the node is proportional
to the logarithm of its frequency. In this plot, r = k = 12.
doi:10.1371/journal.pcbi.1000202.g004

Epistasis and Nonuniform Evolution
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We further confirm this intuition numerically (see Text S1). We

applied the mathematical formulation and drew a sample set of zj’s

from a binomial distribution B(r,0.5). We calculated the probability

of obtaining certain phenotypes and showed that the distribution

of degeneracy levels is comparable to that obtained with our

model. We also demonstrated that the degeneracy levels of

neighboring phenotypes are strongly correlated (Text S1).

Multilayered Developmental Plans
The model we have utilized employs a single layer architecture

and might be thought to limit the scope of possible regulatory

schemes. Computationally this is the case, as at least two-layers

(input layer plus a hidden layer) are required to produce a

perceptron that is a universal Turing machine (or universal

function approximator), as proven for the Cybenko theorem [22],

able to achieve linear separability of inputs as is required by, for

example, the XOR function. However, since we show that a single

regularity layer compresses the image of the genotypes in the

phenotype space, introducing additional layers only produces

further canalization and strengthens our findings. We quantify this

effect by using an extended multilayered developmental model (see

Models) and record the number of unique visible phenotypes and

the phenotype distribution obtained after each iteration.

First we consider the simple, recurrent, or recursive model,

where Dt = D for every t, and examine the effect of introducing up

to 50 regulatory layers. For this recursive scheme, at each

additional layer there is a reduction in the number of visible

phenotypes and an increase in canalization (Figure 6A). Moreover,

the number of visible phenotype reaches an (extremely low)

asymptotic value, which is not influences by additional regulatory

layers, suggesting that a steady state has been reached.

In order to examine these findings in detail we allow the

developmental process to iterate indefinitely until a steady state is

reached. This extended model is also strictly comparable with the

recurrent models introduced in [15,17]. As we consider the entire

set of possible initial genotypes (rather than a single, predefines,

initial phenotype), we apply a slightly more stringent condition for

ascertaining the steady state, and require that the set of unique,

visible phenotypes does not change (note that this condition also

accommodates limit cycle equilibria). Considering 10,000 different

developmental plans, we find that on average the number of visible

phenotypes at steady state is only 10.367 (0.063% of all possible

phenotypes), and that this steady state is reached after 17.767

layers. Figure 6B further illustrates the distribution for the number

of unique visible phenotypes at steady state.

We now examine the behavior of a more general, developmen-

tal model, where each regulatory layer can incorporate a different

developmental plan. This is closer to natural regulation where we

observe multiple layers of post-transcriptional control. As illus-

trated in Figure 6A, this model yields a more complete reduction

in the number of visible phenotypes (as a function of the number of

layers). It is enough to note that the ‘all zeros’ phenotype always

maps onto itself, and that each layer can map some fraction of the

remaining visible phenotypes to this zero-class. This establishes

why this model is asymptotically destined to reach a steady state

with a single, ‘all zeros’, visible phenotype. This raises an

intriguing question as to the optimum number of regulatory

layers. Two or more layers offer greater computational power, but

at a cost of reduced phenotypic variability.

Finally, we observe a change in the distribution of degeneracy

levels as more regulatory layers are introduced. The reduction in

the number of visible phenotypes is accompanied by an increase in

the probability of highly degenerate phenotypes, and by an overall

increase in the extent of degeneracy in the system (Figure S1). This

abundance of highly canalized phenotypes further strengthens the

conclusions obtained for the original model.

Developmental Plans with Variable Connectivity Density
The fully connected model analyzed above represents, to some

extent, a worst-case scenario in terms of gene interactions,

pleiotropy, and epistasis. Here, we examine whether the regulatory

bias observed in our model holds when the regulatory plan is less

dense, and how the density of the plan influences this bias. There

are two competing possibilities to be considered. On the one hand,

if the developmental matrix is very parse, there may be entries in

the phenotype vector that are never activated. This would further

reduce the number of visible phenotypes. On the other hand, for

sparse matrices, each phenotypic element is influenced by only a

few genes (low epistatsis), making the contribution of each gene to

the state of the phenotypic elements higher. Changing one gene in

the genotype could change a corresponding element in the

phenotype (inducing a steeper gain function - see Figure 3B). In

the extreme case of the unit matrix, every change in the genotype

induces a change in the phenotype. This would decrease the level

of neutrality (degeneracy) of the genotype-phenotype map and

consequently produce more visible phenotypes.

We find that sparse matrices generate a smaller fraction of

visible phenotypes (Figure 7A). For example, in comparison to the

8.2% visible phenotypes obtained for a fully connected plan (c = 1),

only 3.4% of the phenotypes are visible for a matrix with c = 0.25

and only 0.6% are visible for c = 0.1 (see Models). It also appears

that the maximum number of visible phenotypes (which is still only

8.7% of the total number of potential phenotypes) is produced for

an intermediate value of c<0.85. This could be the outcome of a

trade-off between the two competing effects discussed above. We

note, however, that the influence of an increase in matrix density

on the fraction of visible phenotypes diminishes for c.0.5.

To disentangle the influence of a sparse matrix density on the

fraction of visible phenotypes derived from varying levels of gene

interactions (epistatsis), from the effect of reduced phenotypic

activation, we control for the number of potentially activated

phenotypic elements under each plan. We measure the number of

variable phenotypic elements (traits), n, obtained for a range of values

of c (Figure 7B). A variable trait is defined as a phenotypic elements

Figure 5. Pr(pj = 1), as a function of sj, the number of +1
elements in D

!
j . The total number of elements in D

!
j , r = 18.

doi:10.1371/journal.pcbi.1000202.g005
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that can be activated (i.e., assume a value of 1) in at least one of the

visible phenotypes produced by a given developmental matrix. As

expected, sparser plans result in a lower number of variable traits. If

only n traits are variable, the potential number of phenotypes is

bounded by 2n (rather than 2r), and it is reasonable to measure the

fraction of visible phenotypes in relation to this lower limit. Examining

the fraction of visible phenotypes out of the achievble (2n) phenotypes,

the effect of the reduced interaction level is revealed (Figure 7C).

Sparser matrices produce a higher fraction of visible phenotypes

(reaching almost 80% on average for very sparse plans), owing to the

higher marginal contribution each gene makes in determining the

state of a phenotypic element. Thus lower epistasis in the sparse

matrix allows for a greater per locus contribution to the phenotype.

We further confirm that the statistical properties of the visible

phenotype distribution still holds for sparse matrices. We first

compare the distribution of degeneracy levels obtained for varying

values of c (Figure S2). Although sparse matrices (e.g., c = 0.1)

produce a more variable distributions, a clear power-law

distribution can already be observed for matrices with c = 0.25

or higher. The patchiness of the visible phenotypic space is also

confirmed for sparse matrices by examining the distribution of

pairwise hamming distances among randomly selected phenotypes

(Figure 8). Sparse matrices induce an even more pronounced

patchy phenotypic space, largely as a result of a reduction in the

number of visible phenotypes these plans produce (see Figure 7A).

In summary, we find that reducing the level of regulatory

interactions in the developmental plan produces two competing

effects. The first effect is to reduce the number of visible phenotypes

and increase the patchiness of the visible phenotypic space. These are

the result of an increase in inactivation for a number of phenotypic

elements. The second effect is an increase in the number of visible

phenotypes. This is a result of the higher marginal contribution of

each gene to determining the state of each associated phenotypic

element. Both these effects are prominent for sparse matrices, but

become negligible for density values in the range c.0.5. This might

suggest that the phenotypic bias generated by the fully connected

matrix remains relevant for typical, empirically derived networks, for

which density values below or close to 0.5 have been observed [23].

An Ontogenetic-Phylogenetic Model
Finally, we consider the effects of the developmental map on

phylogenetic regularities. Since we are focusing on the evolution of

development bearing on phenotypic diversity and disparity, we do

not consider the evolution of the structural genes, but only regulatory

interactions. We assume in the following treatment that develop-

mental plans evolve incrementally and neutrally by addition of new

genetic regulatory elements into existing regulatory networks.

Consider, for example, an ancestral developmental plan that

possesses ra transcription factors, controlling k target genes.

Descendant developmental plans acquire rb.ra transcription factors

(still controlling the same k genes), where all descendant plans share

an identical regulatory wiring for the ancestral ra transcription

factors, and differ in the wiring of the derived factors (Figure 9).

Following findings in the previous section, we focus only on the most

frequent phenotypes produced by each plan as evolutionarily

representative of the complete, visible phenotype set. By focusing

on the most frequent phenotypes, we are considering those

phenotypes most likely to be observed. We are interested in the

phylogenetic distribution of phenotypes generated by the evolution-

ary sequence of developmental plans. We observe that the

phenotypes comprising a single developmental plan, become more

similar throughout the evolutionary process, whereas disparity

among members of different plans increases (Figure 10A). This

process relates to an increase in the regulatory dimension of the

genome, and hence illustrates how regulatory evolution promotes

increasing phyletic disparity while decreasing phenotypic disparity.

To illustrate the similarities and relationships among phenotypes,

specifically between current phenotypes and ancestral phenotypes, we

Figure 6. The effect of multilayered developmental plans. (A) The percentage of visible phenotypes out of the potential phenotypes as a
function of the number of regulatory layers. The regulatory dimension, r, and the phenotypic dimension, k, are both set to 14. For a single regulatory
layer, the visible phenotypes already constitute only 8.2% of the 214 potential phenotypes, in accordance with our results for the basic model.
Introducing additional recurrent layers dramatically decreases the number of visible phenotypes (note the logarithmic scale), reaching 0.06%
(approximately 10 phenotypes) with 50 layers. Furthermore, if each regulatory layer incorporates a different developmental plan, the reduction in the
number of visible phenotypes as a function of the number of layers is even more extreme. (B) The distribution of the number of unique phenotypes
that remain visible when the systems reaches steady state.
doi:10.1371/journal.pcbi.1000202.g006
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perform a phylogenetic analysis. We follow the evolutionary process

described above (see also Figure 9), starting with an ancestral group

that embodies a developmental plan with r = 4 and k = 14. A first

branching event results in two intermediate groups, each with r = 9

and k = 14. A second branching event results in four groups, each

with r = 14 and k = 14. We consider a collection of phenotypes

comprising the most frequent visible phenotypes in the most derived

groups, the intermediate groups, and the ancestral group, and

reconstruct a phylogenetic tree relating these phenotypes (Figure 10B).

This tree is exact as we preserve the complete evolutionary history of

each lineage. The resulting tree not only clusters the derived groups

correctly, but also demonstrates that intermediate and ancestral

groups span the same phenotypic space as their descendants. Note, in

particular, that phenotypes in the ancestral group cover (though,

more sparsely) most of the space covered by the derived groups. A

similar pattern can be observed by means of a principal components

analysis of the phenotypic set (Figure 10C).

Discussion

The implications of developmental dynamics for evolutionary

dynamics has become an area of outstanding interest as details of

the networks underlying body plans have been elucidated [6,24].

There is a growing interest in the stability of phenotypes [25],

Figure 7. The effect of developmental plan density on phenotype distribution. (A) The percentage of visible phenotypes out of the
potential phenotypes as a function of the developmental plan density, c. The regulatory dimension, r, and the phenotypic dimension, k, are both set
to 14. Each point represent the average of 1,000 different plans. For a given density value, c, each entry in the matrix is attributed with a nonzero
value (either +1 or 21) with probability c. (B) The number of variable traits, n (i.e., phenotypic elements that are active in at least one phenotype) as a
function of the developmental plan density, c. The experimental settings are identical to those described in Figure 7A. (C) The percentage of visible
phenotypes out of the 2n achievable phenotypes as a function of the developmental plan density, c.
doi:10.1371/journal.pcbi.1000202.g007

Epistasis and Nonuniform Evolution

PLoS Computational Biology | www.ploscompbiol.org 9 October 2008 | Volume 4 | Issue 10 | e1000202



mechanisms facilitating and constraining the development and

plasticity of traits [26], and the implications of development on

both micro and macro-evolutionary trends [7,9–11].

In this paper we present a schematic model of development

based on a plan resembling a cis-regulatory architecture [14,15],

where transcription factors bind to promoters leading to the

expression or inhibition of downstream, structural genes. The

parsimonious structure of this model is able to reproduce

important empirical regularities in the evolution of development,

allowing us to exclude the need to construct unnecessarily

complicated hypothesis. We find that regulatory mechanisms

promote genetic epistasis in gene expression, leading a large

fraction of phenotypic space to become concealed. This dramat-

ically limits the number of available phenotypes. This finding

suggests that the sparseness of morphological varieties in nature

[27] can be at least partially attributed to the constraining

properties of genetic networks, particularly those networks

regulating the activity of downstream targets of activators. This

property of an abstract regulatory process has been discussed by

Gould, when he writes that, ‘‘phenotypic’ similarities arise instead as

a constraint based on common genesis from a source that imposes limitations or

sets preferred channels of change from within’’ [28]. This interpretation of

convergence is to be distinguished from any reduction in

phenotypic variation subsequent to development arising through

stabilizing selection acting against the deleterious effects of

perturbations of complex regulatory networks.

This is in the statistical sense, a null model for development, ignoring

important properties of dynamics, pattern formation and selective

feedback. All of these processes play a significant role in the formation

of the phenotype and yet all of them are neglected. This follows from

the assumption that a powerful null model seeks to account for a large

percentage of variation with a minimum of functional assumptions.

Hence the rather abstract character of the model, and its inability to

predict particular, empirical details of development.

Degenerate Maps and Morphological Grades
The distribution of phenotypic degeneracy levels recalls results

from the genotype/phenotype map induced by RNA secondary

structure [20], where it has been shown that frequencies of planar

structures are highly nonuniform (following a generalized form of

Zipf’s law) resulting in few common structures and many rare

ones. There are two important differences between simple

genotype/phenotype maps and our results. First, whereas the

RNA genotype/phenotype map is the outcome of physical

interactions between base pairs, the mapping presented in this

paper is the result of a developmental scheme, representing

interactions among multiple transcripts. Second, for RNA

secondary structure, the space of potential shapes is considerably

smaller than the sequence space. RNA studies focus on the

distribution of visible phenotypes and on the organization of the

visible phenotypic neutral networks. We consider the size and

structure of the space not covered by neutral networks.

The molecular study of developmental maps in multicellular

lineages has tended to focus on changes over a small number of

generations, typified by studies of homeotic mutants. Paleontolo-

gists have become interested in the macroevolutionary implica-

tions of developmental evolution, in particular, the production of

features associated with higher taxonomic levels [11]. The

benchmark example of what we might call ‘developmental

macroevolution’ is the Cambrian radiation associated with a

rapid proliferation of highly disparate, multicellular animals [12].

The putative causes of this radiation include the accumulation of

atmospheric oxygen [10], a snowball earth scenario [29], as well as

a variety of putative developmental innovations including the

emergence of Hox cluster of genes [6], and the co-opting of

regulatory networks for new structures and functions [30].

Whatever factors might have lead to the original ‘explosion’ of

varieties, we are able to show with a suitable model for

development, that simple, low dimensional ancestral regulatory

networks will tend to produce a higher disparity among the set of

most frequent phenotypes than is the case for, derived, high-

dimensional networks. This is because the ancestral programs are

less constrained by regulatory epistasis. Moreover, developmental

evolution generates anisotropic phenotypic variation, towards an

increasingly clustered occupancy of phenotypic subspaces. These

results agree with prior studies showing a tendency towards a

clustering of phenotypes and a deceleration of diversification in

abstract morphospaces that arise through branching random walks

[13] at levels above individuals, or through random rates of

speciation and extinction imposed on a background rate of discrete

anagenesis [31].

It has been suggested that developmental plans constitute a

mechanical explanation and justification for phylogenetic grades

[7]. These results support this hypothesis, as each developmental

plan represents a conserved core responsible for imposing a shared

pattern of expression on a lineage of organisms. Critically, these

organisms can share the bulk of their genes and yet remains

significantly different when these genes are expressed through their

unique developmental programs. It remains to be determined why

these programs remain relatively uniform through time. One

possibility is that changes to these programs are more deleterious

than changes to the non-regulatory quotient of the genome [7].

Another possibility, is that since selection acts only indirectly on

the genetic program but directly on the traits that it generates, the

selective pressure on the plan is weak, and when coupled to the

canalizing effects of the plan, severely decelerates the evolutionary

process. In an important sense, it is this property of variation in

structural genes compared to invariance of the developmental plan

that allows for the emergence of high level grades. If this constraint

Figure 8. The distribution of pairwise phenotypic Hamming
distances among randomly selected phenotypes (not pro-
duced by a developmental plan) and visible phenotypes
(including all occurrences of each phenotype) produced by
developmental plans with varying levels of density, c. Each
curve represents the average of 100 different plans. Due to
computational constraints, the regulatory dimension, r, and the
phenotypic dimension, k, are both set to 10.
doi:10.1371/journal.pcbi.1000202.g008
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is relaxed, phenotypes are more uniformly distributed, making the

concept of, for example, phyla an arbitrarily placed epiphenom-

enon of phylogenetic trees.

Developmental Macroevolution
The role of development in generating, or constraining, biotic

diversity has been one of the most active debates in evolutionary

biology [32–34]. The roots of this debate go back to the study of

homologies and questions over physico-chemical verses genetical-

ly-selected rules of growth. One merit of simple developmental

models is to illustrate how these two positions reflect necessary,

complementary properties of generic developmental programs.

Regulatory epistasis introduces non-linearities into development,

allowing similar genotypes to generate significant divergence

among phenotypes, whereas degeneracy tends to contract the

occupancy of morphospace and bias phenotypic samples. Of great

interest is how these structural properties of development have

themselves been modified over the course of evolutionary time,

potentially changing the tempo and mode of the evolutionary

process. One of the paradoxical implications of this study has been

to show how innovations in development (arising through

increasing regulatory dimensions) that lead to an increase in the

volume of accessible phenotypes, can lead to a reduction in

selective variance (through increasing regulatory epistasis), so

whereas the potential for novel phenotypes increases, the fraction

of space these phenotypes occupies tends to contract. Hence the

evolutionary process moves from a macro-configuration, sampling

distant regions of space sparsely, to a micro configuration,

sampling local regions of space at high resolution. This is

analogous to an annealing process, whereby as an optimization

process proceeds, the solutions become more frequent and more

densely localized around the putative solution points.

Supporting Information

Figure S1 A loglog plot of the distribution of degeneracy levels

among visible phenotypes using varying number of regulatory

levels. The settings are identical to those described in Figure 3A in

the main text, but using (A) 1, (B) 2, (C) 5, (D) 10, (E) 25, and (F) 50

regulatory layers. Each point denotes the expected number of

distinct phenotypes with a certain degeneracy level and is an

average over 10,000 different plans. Evidently, introducing

additional regulatory layers further increases the extent of

canalization, producing an increasing number of highly degener-

ated phenotypes. These plots are generated using the same

recurrent developmental plan in each level (as in [1,2]), but using

different plans produces qualitatively identical results.

Found at: doi:10.1371/journal.pcbi.1000202.s001 (0.81 MB TIF)

Figure S2 A loglog plot of the distribution of degeneracy levels

among visible phenotypes for varying regulatory densities. The

settings are again identical to those described in Figure 3A in the

main text, but with the matrix density, c, set to (A) 0:1, (B) 0:25, (C)

0:5, and (D) 1. Each point denotes the expected number of distinct

phenotypes with a certain degeneracy level and is an average over

1,000 different plans. It appears that the power-law distribution of

degeneracy level is showing already in relatively sparse matrix

(e.g., only 25% nonzero entries).

Found at: doi:10.1371/journal.pcbi.1000202.s002 (0.66 MB TIF)

Figure S3 (A) A loglog plot of the distribution of degeneracy levels

among visible phenotypes as obtained by the numerical analysis.

Each point denotes the expected number of developmental plans in

which the ‘half ones’ phenotype obtains a certain degeneracy level,

and is averaged over 1,000,000 different plans. From symmetry

considerations, this distribution reflects the expected distribution of

degeneracy levels among all visible phenotypes in a randomly

Figure 9. Simulating the evolutionary process forward through time. Similar colors denote shared regulatory wiring.
doi:10.1371/journal.pcbi.1000202.g009
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Figure 10. Phenotype distribution in an ontogenetic-phylogenetic model. (A) The average pairwise Hamming distance between visible
phenotypes within and between phyla. Each phylum corresponds to a developmental plan, and the set of the most frequent visible phenotypes
produced by this plan represent species. The ancestral phyla is employing a developmental plan with r = 4 and k = 14. In each branching event, each
of the two descendant phyla add an additional regulatory element with random connectivities preserving the ancestral component of the
developmental plan (Figure 9). This branching process continues until we get the 1024 most recent phyla, each employing a developmental plan
with r = 14 and k = 14. (B) A phylogenetic tree including phenotypes from derived and ancestral phyla. The tree is reconstructed by computing the
pairwise Hamming distance matrix between all phenotypes and applying a neighbor-joining algorithms. Rectangular, triangular, and circular nodes
represent phenotypes from the ancestral phylum, intermediate phyla, and derived phyla respectively. Phyla within each phylogenetic level are
illustrated with different colors. The small tree on the bottom left corner illustrates the phylogenetic tree of different developmental plans (using the
same color coding as that used in the main tree). Phenotypes (or ‘species’) of different phyla differ only in the developmental plan and not in
genotype, but the resulting tree successfully clusters the members of each phyla. Furthermore, the members of intermediate phyla are correctly
clustered, spanning the same phylogenetic space as their descendants. Members of the ancestral phylum (represented by black rectangles) span
similar regions to those covered by all derived phenotypes. (C) Representation of ancestral, intermediate, and derived phenotypes according to the
first two principle components. Ellipses illustrate the mean and variance for each phylum. The color coding is identical to that used in the
phylogenetic tree.
doi:10.1371/journal.pcbi.1000202.g010
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generated developmental plan. Note that the point associated with

degeneracy level 0 (i.e., a hidden phenotype) is not included. (B) The

degeneracy level of the ‘almost half ones’ phenotype, as a function of

the degeneracy level of the ‘half ones’ phenotype in the same plan,

demonstrating the high correlation between the degeneracy levels of

neighboring phenotypes. For convenience, we draw the points

associated with only 1,000 plans.

Found at: doi:10.1371/journal.pcbi.1000202.s003 (0.60 MB TIF)

Text S1 Supporting Text: Numerical Analysis

Found at: doi:10.1371/journal.pcbi.1000202.s004 (1.27 MB PDF)
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