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The human gut microbiome is a major contributor to human metabolism and health, yet the metabolic pro-
cesses that are carried out by various community members, the way these members interact with each other
and with the host, and the impact of such interactions on the overall metabolic machinery of the microbiome
have not yet beenmapped. Here, we discuss recent efforts to study themetabolic inner workings of this com-
plex ecosystem.Wewill specifically highlight two interrelated lines of work, the first aiming to deconvolve the
microbiome and to characterize the metabolic capacity of various microbiome species and the second aim-
ing to utilize computational modeling to infer and study metabolic interactions between these species.
Introduction
The human microbiome—the collection of microorganisms that

colonize the human body—plays an important role in several

physiological processes and ultimately in our health (Clemente

et al., 2012; White et al., 2011; Zarco et al., 2012). Of the many

communities that comprise themicrobiome, the one that resides

in our gut is especially intertwinedwith our own physiology and is

tightly linked to our metabolism. The metabolic capacities of this

gut microbiome allows us, for example, to harvest otherwise

inaccessible energy from our diet (Bäckhed et al., 2004; Gill

et al., 2006; Thomas et al., 2011; Xu et al., 2003) and to bio-

transform various xenobiotics (Clayton et al., 2009; Maurice

et al., 2013; Sousa et al., 2008; Ursell and Knight, 2013). To a

large extent, the microbiome can therefore be viewed as a hu-

man organ, with specific tasks, operation modes, and capacities

(Baquero and Nombela, 2012; O’Hara and Shanahan, 2006).

Considering its profound impact on our own metabolism, it is

perhaps not surprising that the gut microbiome has been asso-

ciated with several metabolic diseases including obesity (Ley

et al., 2005, 2006; Turnbaugh et al., 2006, 2008; Upadhyay

et al., 2012) and type 2 diabetes (Qin et al., 2012). The discovery

of such associations and the growing appreciation for the impact

that the gut microbiome has on our health have promoted exten-

sive efforts to study the microbiome and to characterize its taxo-

nomic and genetic composition. Much of this effort has been

focused on identifying compositional shifts associated with dis-

eases or with specific perturbations (Theriot et al., 2014). Such

studies provide crucial clues into the way themicrobiome affects

our health and contributes to various host phenotypes. To date,

however, much less is known about the inner workings of the

microbiome and the various metabolic mechanisms that are at

play in this ecosystem.

Two major obstacles impede progress in particular: The first

concerns the inherently inextricable nature of the microbiome
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and of much of the data generated to study it. The gut microbiota

of each individual comprises hundreds to thousands of taxa,

each encoding a unique collection of enzymatic genes and car-

rying out a unique set of metabolic reactions. An important pre-

requisite to any mechanistic understanding of the microbiome is

therefore a detailed characterization of the capabilities of each

species. Unfortunately, however, a species-level analysis is

often challenging in the context of naturally occurring commu-

nities, as many community members resist isolation and

culturing efforts. In fact, it was observed over a century ago

that when plating microbial samples, most species do not

grow to form colonies (Winterberg, 1898), and today it is esti-

mated that only �1% of bacterial taxa are readily cultivable

under normal conditions in vitro (Vartoukian et al., 2010).

Although the fraction of culturable taxa may be higher in hu-

man-associated communities, isolation and culturing challenges

may still hinder the study of key community members and of the

community as a whole. These challenges, in turn, have rendered

shotgun metagenomic sequencing the method of choice for

studying the microbiome and for many analyses of its functional

capacity. Metagenomic technologies bypass the need to isolate

and culture individual species, analyzing genomic material ob-

tained directly from a mixed sample of species and character-

izing the aggregated gene content in the community (Schloss

and Handelsman, 2005; Tringe et al., 2005). These technologies

therefore generate convolved data, reflecting ‘‘community-level’’

capacity rather than species-specific capabilities. Additional

meta-omic technologies, such as meta-transcriptomics (Frias-

Lopez et al., 2008; Turner et al., 2013; Urich et al., 2008),

meta-proteomics (Erickson et al., 2012; Keiblinger et al., 2012;

Klaassens et al., 2007; Kolmeder and de Vos, 2014), and meta-

metabolomics (Lu et al., 2014; McHardy et al., 2013; Ridaura

et al., 2013; Theriot et al., 2014; Weir et al., 2013) have also

been introduced, again providing community-level measures of
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transcripts, proteins, and metabolites without necessarily re-

lating these measures to specific community members (Segata

et al., 2013).

The second challenge stems from the inherent complexity of

the microbiome ecosystem. Complexity, especially in biology,

is a product not simply of the number of parts a system is

composed of, but rather of the complex and often nonlinear

way in which these parts interact (Weaver, 1948). Such interac-

tions play an essential part in the microbiome clockwork and

span multiple organizational scales. Within each species, the

orchestrated interconnected activity of hundreds and often thou-

sands of enzymes, both within the boundaries of a single cell and

across different cells from this species population, bestows each

species with a complex set of metabolic capabilities. Each spe-

cies further competes for and exchanges metabolites with other

taxa in its vicinity and may modulate its metabolic activity in

response to environmental shifts or to the activity of other taxa

in the community (Little et al., 2008; Schink, 2002). The micro-

biome, as a whole, in turn interacts with the host metabolism,

immune response, and diet. This extremely complex web of

interactions is an essential part of the microbiome’s capacity,

activity, and dynamics, and it is therefore hard to imagine that

a principled understanding of this multilevel and hierarchical

complex system could be gained without accounting for such in-

teractions (Borenstein, 2012). Furthermore, the composition of

taxa in the microbiome can vary substantially over even short

time scales (Dethlefsen and Relman, 2011), and with it the set

of genes in the metagenome and the overall functional capacity

of the community. Diet, for example, was shown to rapidly

induce compositional shifts associated with obesity (David

et al., 2014), but microbiota transplants were able to induce

and subsequently rescue obesity-like symptoms (Ridaura

et al., 2013). This plasticity of the microbiome and the bidirec-

tional interaction between the composition of the microbiome

and the state of the host make discerning cause and effect

with respect to compositional shifts associated with a disease

state an extremely challenging task (Duncan et al., 2008; Jump-

ertz et al., 2011; Schwiertz et al., 2010).

In this perspective, we will review and discuss recent efforts to

address these challenges with an eye toward gaining an

improved, systems-level mechanistic understanding of the

microbiome. We will specifically describe two complementary

lines of work. The first aims to untangle the microbiome and to

obtain species-specific characterization ofmetabolic capacities.

We will discuss various approaches to isolate and sequence

individual species aswell asmethods for deconvolving themeta-

genome. The second line of work aims to model the micro-

biome’s metabolic machinery and to infer metabolic interactions

between taxa using various in silico metabolic modeling frame-

works. Combined, this body of work provides a first peek into

the inner workings of the microbiome and lays the foundation

for a comprehensive, system-level understanding of its function

and dynamics.

Untangling the Microbiome: Inferring the Metabolic
Capacity of Community Members
From Cells to Genomes to Genes

When studying the metabolic capacity of microbial species,

each species is often viewed simply as the collection of meta-
bolic reactions it can catalyze. Attention is then focused on

determining which annotated gene families or gene orthology

groups (such as those defined by KEGG; Kanehisa et al., 2012)

are encoded in its genome, ignoring any other sequence-level

information that may be embedded in the genome. Many

comparative genomic analyses, as well as metabolic modeling

frameworks, use this gene-centered representation as a point

of departure. In the context of metabolism-focused microbiome

research, this representation provides a simple description of

the various players in the ecosystem and their capabilities. It

allows, for example, for studying the division of labor between

different community members or the potential for competition

and syntrophy.

Clearly, the convoluted nature of microbial communities

makes such species-specific characterization hard to obtain,

calling for the development of methods for untangling mixed

communities. Importantly, however, untangling can be per-

formed at multiple levels, ranging from a physical isolation of

microbial cells, to an assembly-based sequence-level ‘‘isola-

tion’’, to a gene-centeredmetagenomic deconvolution (Figure 1).

Below, we will briefly discuss such efforts, as well as the

strengths and limitations of deconvolving the microbiome at

the various levels.

Isolating and Culturing ‘‘Unculturable’’ Community

Members

Traditional, culture-based techniques have been the corner-

stone of microbiology. Accordingly, the most straightforward

way tomap themetabolic capacities of a given communitymem-

ber involves the physical isolation of this species from the com-

munity and subsequent culturing. The genome of the cultured

isolate can then be easily extracted and sequenced, and the

various genes it encodes can be called and annotated (Delcher

et al., 2007; Hyatt et al., 2010). Importantly, isolation and

culturing can further facilitate extensive biochemical and exper-

imental profiling to study the physiology of the cultured isolate

and to assign functions to the many unknown enzymes encoded

by its genome, augmenting any genomic-based predictions. As

discussed above, however, efforts to isolate and culture individ-

ual community members under normal conditions often fail, sug-

gesting that more sophisticated experimental techniques are

required (Stewart, 2012).

Indeed, several studies have recently introduced improved

culturing methods in order to grow such previously uncultivated

bacteria. Using various anaerobic culturing methods on a

mixture of microbes from the human gut community, one study

demonstrated it was possible to recover �56% of species-level

taxa in the sample (Goodman et al., 2011). Diluting themixed cul-

ture further enabled obtaining 1,172 taxonomically defined iso-

lates that in principle could be sequenced and annotated. A

different study used an in vivo cultivation method followed by

plating on anaerobic medium to isolate 31 species from the hu-

man oral community, likely representing many unknown species

and genera (Sizova et al., 2012).

More recently, several single-cell sequencing techniques have

been introduced, bypassing the challenges involved in culturing

many bacterial species. In these methods, individual cells

are separated from the sample using optical trapping on a

microfluidic device or fluorescent-aided cell sorting techniques

(Rodrigue et al., 2009) and are subsequently lysed, amplified,
Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc. 743



Figure 1. A Culture-Independent Metagenomic Pipeline versus a
Culture-Based Genomic Pipeline
Microbiome untangling can be accomplished at several different levels,
crossing over from the metagenomic pipeline into the single-species genomic
pipeline at various stages, as discussed in the text. Specifically, microbial cells
can be physically isolated and cultured or sequenced using single-cell geno-
mics. Shotgun metagenomic short reads can also be assembled de novo into
genomes or large contigs using binning and metagenomic-based assembly.
Finally, community-level functional profiles can be mathematically decon-
volved into species specific functional profiles. Ultimately, the functional
capacity of various community members can be characterized, facilitating
species-level modeling and analysis.
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and sequencedwithout cultivation. Such an approach was used,

for example, to study hot spring sediments and to obtain two

nearly complete genomes of a candidate species from a pre-

sumed novel bacterial phylum (Dodsworth et al., 2013). Exam-

ining the recent oil spill in the Gulf of Mexico, another study

has constructed a draft genome of a species from the order

Oceanospirillales and has examined its metabolic repertoire

(Mason et al., 2012). A recent study, aimed directly at

sequencing the ‘‘dark matter’’ in the microbial phylogeny, used

a similar single-cell approach to isolate and sequence 201 previ-
744 Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc.
ously uncultivated bacterial and archaeal strains, uncovering

novel metabolic features such as an archaeal-type purine syn-

thesis protein in bacteria (Rinke et al., 2013). Additional efforts

to expand and fill in the gaps in the microbial tree of life are

currently ongoing (Wu et al., 2009).

Assembly of Genomes from Metagenomes

While the methods described above for isolating, culturing, and

ultimately sequencing individual communitymembers are clearly

expanding the range of bacterial and archaeal genomes avail-

able, some microbial species are still likely to evade isolation

efforts. Moreover, such methods are often applied on a small

scale and focus on only a single or a few microbial species at a

time. A promising alternative therefore avoids isolating an

individual species from the community at the physical level alto-

gether, and instead aims to isolate its genome from the metage-

nome at the sequence level. This ‘‘isolated’’ genome can then be

annotated and analyzed to infer the metabolic capabilities of the

species.

Various studies, for example, have used standard de novo

genome assembly methods (Baker, 2012; Flicek and Birney,

2009) to assemble genomes or large genomic contigs directly

from shotgun metagenomic samples (Handley et al., 2014).

This approach assumes that reads originating from a given

high-coverage genome in the sample will assemble successfully

into contigs and thereby separate from other reads. Clearly,

however, applying algorithms developed originally for assem-

bling reads from a single-species sample without adjusting

them to the complexities of metagenomic data may produce

erroneous results. For example, uneven representation of spe-

cies in the sample could cause genomic regions in highly abun-

dant species to be misidentified as repeats of a single genome

(Pop, 2009). Similarly, variations between closely related species

in the sample could cause various assemblers to construct

distinct contigs for each variant, resulting in a more fragmented

assembly (Simmons et al., 2008). Recently, metagenome-spe-

cific assemblers have been developed (Beitel et al., 2014; Burton

et al., 2014; Iverson et al., 2012; Lai et al., 2012; Laserson et al.,

2011; Namiki et al., 2012; Peng et al., 2012; Treangen et al., 2013)

that more rigorously address these issues and account for the

specifics of metagenomic data. Many such assemblers, for

example, aim to first cluster reads or contigs into bins based

on nucleotide content, abundance, graph connectivity proper-

ties, mate-pair sequences, or spatial proximity and then use

these clusters to reconstruct genome scaffolds.

Using such a binning-based approach, several studies have

indeed successfully assembled various genomes of interest. In

what was perhaps the first attempt to assemble a genome

directly from shotgun metagenomic data, GC content was

used to partition assembled scaffolds from an acid mine

drainage metagenomic sample into bins (Tyson et al., 2004).

These bins were then used to construct near-complete genomes

of Leptospirillum group II and Ferroplasma type II. In a study of

the surface seawater metagenome, mate-pairing information

was used to link assembled contigs into graphs that were then

split using nucleotide composition and read-coverage statistics

into scaffolds (Iverson et al., 2012). These scaffolds were eventu-

ally binned using tetra-nucleotide statistics into several near-

complete genomes, including one closed genome representing

a previously uncultured marine group II Euryarchaeota. In the
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context of the human gut microbiome, two studies of the early

colonization of the infant gut (Brown et al., 2013; Sharon et al.,

2013) binned contigs based on time-series abundance data

rather than on nucleotide content, obtaining �20 complete ge-

nomes and studying their predicted metabolic functions,

whereas another study combined metagenomic data from the

human gut and groundwater to assemble genomes from a new

candidate phylum, Melainabacteria (Di Rienzi et al., 2013).

Computational Inference of the Genomic Content of

Community Members

While metagenomic-based genome assembly methods are

likely to expand with the development of long-read and deeper

coverage sequencing technologies, they may not be readily

applicable in every setting. Even with increased coverage and

longer reads, it may be hard, for example, to assemble the ge-

nomes of low abundance species, especially in highly diverse

communities or when closely related reference genomes are

not available. Some computational methods have therefore

been introduced, bypassing the assembly process completely

and directly predicting the set of genes (or gene families) en-

coded by a yet-to-be-sequenced species. One such method,

termed ‘‘metagenomic deconvolution,’’ specifically aims to

decompose metagenomic community-level gene content data

(e.g., obtained by mapping shotgun metagenomic reads to

known gene families or orthology groups) into taxa-specific

gene profiles (Carr et al., 2013). This method relies on the fact

that the gene content in a given metagenome is a linear combi-

nation of the gene content of the member species and that this

relationship can bemathematicallymodeledwhen both the taxo-

nomic and the gene content profiles of a given sample are avail-

able. Metagenomic deconvolution then uses this model to

analyze covariation between the abundances of the various

taxa and the abundances of the various gene families across a

set of metagenomic samples and identifies the most likely asso-

ciation between genes and their taxa of origin. This approach

was shown to successfully reconstruct species-level gene con-

tent of microbiome taxa both in simulated data and in samples

from the human microbiome project. For a mathematical formu-

lation of the deconvolution framework, see Carr et al., 2013 (and

see also Shen-Orr and Gaujoux, 2013 for a general review of de-

convolution approaches).

Other computational methods applied different approaches to

predict the set of gene families encoded by various yet-to-be-

sequenced species. Several such methods, for example, rely

on evolutionary gene content conservation, assuming that

phylogenetically related species (e.g., those with similar 16S se-

quences) encode a similar set of genes (Zaneveld et al., 2010).

With this assumption in mind, several studies mapped prevalent

yet-to-be-sequenced community members to their nearest

sequenced reference genome (using 16S similarity), estimating

the functional capacity of each of these species (Morgan et al.,

2012; Muegge et al., 2011). Taking this approach further, a

computational framework has been recently introduced to pre-

dict the gene content of organisms that have not yet been

sequenced based on the set of genes found in sequenced rela-

tives and on evolutionary modeling (Langille et al., 2013). Specif-

ically, this framework uses a phylogenetic tree and various

ancestral state reconstruction methods (Csurös, 2010; Paradis

et al., 2004) to infer the gene content of ancestral species and
ultimately the gene content of all species found in a given com-

munity. Coupling this inference method with species abundance

data, this framework was shown to predict the functional content

of the metagenome as a whole.

Modeling Microbiome Metabolism and Metabolic
Interactions
Why Model Metabolism?

As discussed above, characterizing the metabolic capacity of

each community member is not sufficient to explain the complex

inner workings of the microbiome. Rather, the web of interac-

tions between these community members and the way they

impact community dynamics need to be mapped in order to

gain a fundamental understanding of the microbiome. Such in-

teractions can be probed in various ways. Studying simple syn-

thetic or naturally occurring communities, both in vitro (Kim et al.,

2008; Kolenbrander, 2011; McDonald et al., 2013; Park et al.,

2011; Petrof et al., 2013; Rakoff-Nahoum et al., 2014; Trosvik

et al., 2010) and in vivo (e.g., using gnotobiotic animal models)

(Faith et al., 2011; Lee et al., 2013; Mahowald et al., 2009; Roes-

elers et al., 2011), can provide valuable insights into the impact

the activity of one species may have on the growth of another.

Notably, the complexity of these experimental communities

can vary from very few taxa (e.g., Mahowald et al., 2009; Trosvik

et al., 2010) to representations of the entire microbiome (e.g.,

McDonald et al., 2013). Such assays, however, often do not pro-

vide any information about the mechanisms that are at play and

may not offer a principled understanding of the processes under-

lying specific microbe-microbe or microbe-host interactions,

particularly when investigating complex communities. Further-

more, since these approaches tend to be labor intensive and

costly, they cannot be easily applied to an arbitrarily wide array

of distinct communities. Similarly, analyzing the co-occurrence

of species across samples (Faust et al., 2012) provides crucial

clues into the presence of non-neutral structuring forces, but it

may fail to elucidate underlying mechanisms of interaction.

Below, we therefore discuss an alternative, modeling-based

approach for studying species interaction. Importantly, we focus

mainly on genome-scale metabolic modeling and on studies

aiming specifically to provide a mechanistic understanding of

such interactions at various scales (Levy and Borenstein,

2014). Other more phenomenological modeling frameworks

have been also introduced to quantify, for example, the strength

of interactions or to predict microbiome dynamics (e.g., Marino

et al., 2014; Stein et al., 2013), yet suchmodels commonly ignore

underlying mechanisms of interaction. Genome-scale metabolic

models, by contrast, have been instrumental in mapping geno-

type to phenotype and in elucidating mechanisms of microbial

behavior at the single-species level (Borenstein et al., 2008;

Reed and Palsson, 2003), and developing methods to extend

such frameworks and to model multispecies systems (such as

the human microbiome) is therefore a promising route toward a

more comprehensive understanding of species interactions

(Borenstein, 2012). Multispecies metabolic models have the

potential not only to infer unknown modes of interaction but

also to provide a detailed account of the underlying metabolic

machinery that contributes to such interactions. In the context

of the human microbiome, such models are also critical to the

development of targeted intervention strategies and the cogent
Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc. 745



Figure 2. Alternative Multispecies Modeling Frameworks
(A) Simple network-based models can be used to predict the metabolic niche of each species (e.g., using the algorithm introduced in Borenstein et al., 2008). The
potential for competition and syntrophy between a pair of species can be inferred by comparing their predicted niches (Levy and Borenstein, 2013).
(B) A common compartmentalization scheme in multispecies constraint-based models includes a separate compartment for each species, a shared medium
compartment, and explicit shuttle reactions. Community objective is often defined as a weighted sum of the species’ biomass (see, for example, Stolyar et al.,
2007).
(C) A dynamics-based multispecies model, as introduced, for example, in Chiu et al., 2014. The growth of each species is independently optimized according to
nutrient availability and allocated resources. This optimization step is used to infer the growth rate of each species, as well as uptake and secretion rates. These
are used to update the composition of the shared medium and of the community. By iterating this process, community temporal dynamics can be tracked.
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design of synthetic microbiota (Greenblum et al., 2013). Previous

attempts at synthetic microbiome design utilized either random

combinations of or relatively minor modification to existing ge-

nomes (Faith et al., 2014; Kotula et al., 2014; Petrof et al.,

2013), and in turn, the internal operation of these systems is often

not well understood.

Selecting a Modeling Framework

Over the past few decades, a plethora of metabolic modeling

frameworks have been introduced. These frameworks vary

greatly in their scale and resolution, in the assumptions under-

lying the models, and in the information required to reconstruct

them. Selection of an optimal modeling strategy is therefore

critical and should clearly depend on the research objective

and on the nature and scope of available data. In many cases,

framework selection may entail a tradeoff between various

modeling goals. For example, a simple modeling framework

will often offer limited predictive power but can be easily

applied to large communities and can utilize a wide variety of

data. On the other hand, a more sophisticated framework

may offer high-resolution predictions but may only be appli-

cable on a smaller scale or to simpler communities. A modeling

framework can also be chosen according to the specific ques-

tions to be addressed and to the context of the study. For

example, to address questions concerning community meta-

bolism, models may be reconstructed at the metagenome

scale (Greenblum et al., 2012), whereas genome-scale models

may be used to describe metabolic exchanges between com-

munity members or the specific contribution of each member

to the community at large. Below, we describe recent advances
746 Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc.
in modeling metabolic interactions and discuss considerations

of complexity and scale.

Network-Based Models of Species Interaction

One of the simplest yet most powerful approaches for modeling

microbial metabolism employs a naive, network-based model to

represent the set of biochemical reactions carried out by a given

species and focuses on studying the connectivity and topology

of such networks as a way to obtain insights into the species’

metabolism and ecology (Borenstein et al., 2008; Jeong et al.,

2000; Kreimer et al., 2008; Levy and Borenstein, 2012; Stelling

et al., 2002;Wunderlich andMirny, 2006). In such network-based

models, parameters such as enzyme kinetics, reaction fluxes,

and stoichiometry are often disregarded in favor of a simpler,

connectivity-focused representation. While these simplifications

potentially reduce the predictive power of the model, network-

based models are easy to reconstruct, require minimal informa-

tion, and can therefore be applied on a very large scale—a

critical feature for modeling complex microbiome systems.

Recently, several studies have introduced preliminary at-

tempts to expand such network-based frameworks, moving

beyond models of a single species and aiming to model multi-

species microbial communities and to obtain insights into their

behavior and assembly. Some of these studies, for example,

developed methods for integrating several genome-scale meta-

bolic networks and for inferring cross-species metabolic interac-

tions (Figure 2A). This approach has been used, for example, to

study host-parasite interactions (Borenstein and Feldman,

2009), bacterial ecological strategies (Freilich et al., 2009), or

the global organization of bacterial co-occurrence interactions
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(Freilich et al., 2010). Focusing specifically on the human gut

microbiome, a recent study used a similar approach to recon-

struct genome-scale metabolic network models of >150 gut-

dwelling species and introduced a graph theory-based method

to predict potential metabolic competition and syntrophy be-

tween each pair of species (Levy and Borenstein, 2013).

Comparing these predicted interactions with the tendency of

species to co-occur in the human gut microbiome (as measured

throughmetagenomic sequencing), this study was able to reveal

organizational forces that may govern the assembly of the gut

microbiome. Specifically, it was shown that species tend to

co-occur with their strongest competitors, suggesting that

habitat filtering is a major determinant of community assembly.

Importantly, by analyzing the metagenome through the lens of

genome-scale metabolic models, this study was able to address

questions that metagenomic-based studies cannot. Similar

models that directly link the network topologies of interacting

species can further identify specific metabolic exchanges be-

tween microbial species or between such species and the host

(Cottret et al., 2008, 2010).

An additional benefit of this simple, network-based represen-

tation of metabolism is that it can be used to model metabolic

processes at many different scales, including the scale of the

microbiome as a whole. Indeed, network-based models have

been applied successfully to a wide range of meta-omic ana-

lyses, revealing salient characteristics of the humanmicrobiome.

These metagenome-scale models pool all the metabolic reac-

tions that can be catalyzed by the microbiome with no regard

for organism boundaries. For example, in one of the first studies

to introduce this metagenomic-systems biology framework,

Greenblum et al. (2012) projected enzyme abundances from

human gut microbiome metagenomic data onto a metage-

nome-scale metabolic network, demonstrating that microbiome

enzymes associated with obesity and with inflammatory bowel

disease tend to be located at the periphery of the network. These

enzymes represent ‘‘contact points’’ between the community

and the host and conceivably would have more influence on or

be more influenced by the state of the host. Applying this frame-

work to other meta-omic data could similarly provide insight not

available without metabolic modeling. One study, for example,

combined network topology with meta-metabolomics to identify

modules differentially abundant between pre- and post-small

bowel transplant communities, providing a more comprehensive

picture of how the human gut community responds to major

ecological changes (Hartman et al., 2009). Other studies used

meta-transcriptome derived networks to identify pathways not

previously associated with periodontal disease (Jorth et al.,

2014) or alternative pathways to biomass production (Xiong

et al., 2012).

Constraint-Based Models of Species Interaction

A fundamentally different and complementary approach for

modeling metabolic interactions between microbial species

utilizes the well-established framework of constraint-based

modeling (Reed and Palsson, 2003). Such models represent

metabolic stoichiometry and known bounds on metabolic fluxes

as a set of mathematical constraints and identify a distribution of

fluxes that meets the various constraints and that optimizes

some predefined objective (Price et al., 2003). Flux balance anal-

ysis (FBA), for example, aims to infer the flux through each reac-
tion by optimizing biomass production, ultimately predicting

various organismal phenotypes such as growth rate and metab-

olite uptake and secretion. Often, constraint-based models are

thoroughly curated and rigorously validated, thereby sacrificing

broad applicability in favor of predictive and descriptive power.

A detailed description of the theoretical basis and mathematical

formulation of FBA can be found in Orth et al. (2010).

While such constraint-based models have proved extremely

successful in predicting the behavior of individual species

(Edwards et al., 2001), several crucial elements in their formula-

tion must be extended before they can be applied to model

multispecies systems. One such element concerns the compart-

mentalization of the various reactions included in the model

(Taffs et al., 2009). In the first multispecies FBA model of

microbial metabolism, which aimed to study the interaction be-

tween sulfate-reducing bacteria and methanogenic archaea

(commonly found in the cow rumen), the stoichiometry matrix

was expanded to represent each species as a separate com-

partment (Stolyar et al., 2007). Metabolic exchange between

the two species was then represented by external shuttle reac-

tions between these compartments through a third compartment

representing a shared environment (Figure 2B). This compart-

mentalization approach became standard and was later used

in several other multispecies FBA models (e.g., Freilich et al.,

2011; Klitgord and Segrè, 2010; Wintermute and Silver, 2010).

One such study has utilized a flux balance approach to predict

metabolic interaction among >100 species, demonstrating a

close interplay between ecological patterns and the potential

for species to compete or cooperate (Freilich et al., 2011). This

study further demonstrated that cooperative interactions tend

to be unidirectional but that species often form cooperative

loops, benefiting all species involved.

An additional modeling element that can greatly influence the

applicability and interpretation of an FBA model is the choice of

objective function. In the first multispecies model described

above, the community objective was defined as a weighted

sum of the species’ biomass, as determined from empirically

measured abundance ratios. However, since growth-rate ratios

are typically unknown, more generally applicable solutions

have been suggested. The OptCom framework (Zomorrodi and

Maranas, 2012) utilizes a multilevel objective function, wherein

individual species growth represents an inner objective and total

community growth represents an outer objective. A global solu-

tion can then be found via bilinear optimization. A carefully

defined objective function can also facilitate the application of

FBA directly to metagenomic data. For example, a recent study

of the interaction between three gut dwelling species used a

multispecies FBA model coupled with two distinct objective

functions, each applied to address a different prediction task

(Shoaie et al., 2013). First, metabolic secretion was predicted

given a defined dietary input and was solved by constraining

microbial abundances while minimizing substrate uptake rates.

Subsequently, species abundances were also predicted by con-

straining uptake rates and optimizing total community growth.

Notably, fatty acid secretion and metabolic reprogramming pre-

dicted by the model were in accord with experimentally

measured values (Mahowald et al., 2009). Another solution was

introduced in the first constraint-based model of a gut microbe

interacting with its eukaryotic host (Heinken et al., 2013). In this
Cell Metabolism 20, November 4, 2014 ª2014 Elsevier Inc. 747
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framework, the growth of one organism was constrained while

that of its partner was optimized, describing the trade-off

between host and microbe optimal growth. Notably, this model

was able to demonstrate mutualistic growth in an idealized

host-microbiome system, as well as rescue of a lethal host geno-

type by a symbiont. Although in this study a generic mouse

model (with extension for intestinal transport and absorption)

was used for the host, well-curated human metabolism models

(Duarte et al., 2007) (as well as tissue-specific models; Jerby

et al., 2010; Wang et al., 2012) have been introduced and can

be similarly integrated into a more accurate host-microbiome

model.

The success of the modeling approaches described above in

recovering observed patterns of microbial interaction highlights

the potential of multispecies constraint-based models, but it

also warrants a discussion of the limitations of these frameworks

and of potential solutions. First, it is unclear how these frame-

works scale with community complexity and how they may

be used to model more complex interactions. Multispecies

constraint-based models are still in their early days, and efforts

are mainly focused on developing approaches for modeling

very simple communities. Second, naively defined objectives

have the potential to produce biologically implausible predic-

tions. Specifically, the commonly used objective function that

aims to maximize total community growth (e.g., Shoaie et al.,

2013; Stolyar et al., 2007) inherently assumes altruistic coopera-

tion between community members and may therefore predict

that one species neglects its own growth to facilitate the faster

growth of another.

Introducing temporal dynamics and expanding single-spe-

cies dynamic FBA models (e.g., Collins et al., 2012) to account

for multiple species with a shared environment may provide

a viable alternative (Figure 2C). In such dynamics-based

frameworks, the growth of each species is optimized indepen-

dently of its partners’ growth on a short time scale (as deter-

mined by nutrient availability), and the shared environment

is iteratively updated according to predicted species’ growth,

uptake, and secretion rates (Chiu et al., 2014; Tzamali et al.,

2011; Zhuang et al., 2011). Competitive effects and metabolic

interactions are therefore mediated through the environment

as a natural byproduct of niche construction, rather than being

explicitly formulated in the model. Importantly, in this way, the

need to optimize a more complex and potentially artificial

objective function at the community scale is circumvented.

Instead, community dynamics over a long timescale are re-

vealed through integration of discrete time steps. Using this

approach, a recent study integrated dynamic FBA with flux

variability analysis to model metabolic interaction across hun-

dreds of two-species consortia and to study the emergence

of metabolic capacity in such simple communities (Chiu

et al., 2014). Indeed, emergent biosynthetic capacity, wherein

a multispecies community secrets into the environment meta-

bolic products that no constituent species secretes when

grown in isolation, was found to be prevalent. Using this

modeling framework, it was also shown that emergent biosyn-

thetic capacity commonly occurs in two distinct phases of

community growth and that it is most probable when commu-

nity members have moderately similar sets of metabolic capa-

bilities (Chiu et al., 2014).
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Integrating Metabolic Modeling with Other Modeling

Approaches

Metabolic models, of course, are not the only modeling frame-

works capable of generating hypotheses or predictions of micro-

biome behavior, and other frameworks, focusing on ecological

dynamics or on spatial organization, have been recently intro-

duced. Such alternative modeling frameworks are often comple-

mentary and could be coupled in exciting ways. Stein et al.

(2013), for example, introduced a generalized Lotka-Volterra

model of species growth rates, interactions, and antibiotic sus-

ceptibility capable of predicting community dynamics over a

large timescale, as well as response to antibiotic perturbation

(and see also Marino et al., 2014). Notably, the parameters of

this model were learned directly frommetagenomic data without

utilizing any prior knowledge of species physiology. Similarly,

Trosvik et al. (2010) applied a Generalized Additive Model to

time-series data representing growth of a model gut community

to quantify the influence of intrinsic microbe-microbe interac-

tions. Metabolic models could complement such efforts both

‘‘upstream’’ by informing the search for optimal parameters

and ‘‘downstream’’ by offering a mechanistic interpretation to

phenomenological model predictions. Agent-based models

have been proposed to account for spatial resolution in studying

species interaction (Kreft et al., 2013; Schluter and Foster, 2012)

and have been successfully applied to study small cooperative

communities (Momeni et al., 2013a, 2013b). In such agent-based

models, the microbe’s internal complexity is mostly stripped

down to allow implementation and tractability, and the rule set

that determines the behavior of each agent is often somewhat

arbitrary. Metabolic models can offer an attractive solution and

could be used, for example, to determine the general behavior

of a group of agents at specific time steps, leading to a true

multiscale model. A simpler alternative approach for integrating

metabolic modeling and spatial resolution has recently been

introduced, where a constraint-based metabolic model was

used to predict the behavior of various microbial species over

a short time scale and a lattice-based environment and classical

diffusion dynamics were used to determine how metabolites are

exchanged between adjacent microhabitats (Harcombe et al.,

2014).

Concluding Remarks
Our ability to generate computational models of complex biolog-

ical systems is rapidly improving. Yet, even as we are beginning

to address the challenge of modeling whole cells (Karr et al.,

2012), we are still a ways from generating equally comprehensive

models of whole communities. Host-associated communities

pose additional challenges, as host phenotypic response and

its impact on the community further complicate any modeling

framework and prohibit many typical simplifying assumptions

(Heinken et al., 2013; Thiele et al., 2013). The influences of

gene regulation and genotypic variation are also currently largely

ignored in metabolic models, but they must be taken into

account to achieve the desired level of comprehensiveness or

for applications to personalized medicine. Similarly, microbe-

microbe signaling and antibiotic production are not within the

scope of metabolic models, but they greatly impact growth.

Finally, our ability to identify gene families has rapidly outpaced

our ability to functionally characterize them: by some estimates,
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as many as 75% of identified genes lack a functional annotation

(Qin et al., 2010), yet enzymatic characterization is crucial to in-

clusion in metabolic models. Analogous to the aforementioned

microbial ‘‘phylogenetic dark matter’’, these uncharacterized

genes represent a ‘‘functional dark matter’’; it is potentially

responsible for the most interesting and complex capacities of

the microbial world, yet its precise function and the way such

functions are carried out remain amystery. Ironically, in success-

fully mapping the phylogenetic dark matter, we accelerate the

discovery of uncharacterized gene families and of such func-

tional dark matter, revealing how little we know of microbial

metabolism at large. As advanced as high-throughput genomic

technologies may be, meticulous, low-throughput biochemical

assays still represent the ultimate solution to this problem, high-

lighting the importance of constant feedback between charac-

terizing the elements of the systems and the system as a whole.
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