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SUMMARY

The combinatorial cross-regulation of hundreds of
sequence-specific transcription factors (TFs) defines
a regulatory network that underlies cellular identity
and function. Here we use genome-wide maps of
in vivo DNaseI footprints to assemble an extensive
core human regulatory network comprising connec-
tions among 475 sequence-specific TFs and to
analyze the dynamics of these connections across
41 diverse cell and tissue types. We find that human
TF networks are highly cell selective and are driven
by cohorts of factors that include regulators with
previously unrecognized roles in control of cellular
identity. Moreover, we identify many widely ex-
pressed factors that impact transcriptional regula-
tory networks in a cell-selective manner. Strikingly,
in spite of their inherent diversity, all cell-type regula-
tory networks independently converge on a common
architecture that closely resembles the topology
of living neuronal networks. Together, our results
provide an extensive description of the circuitry,
dynamics, and organizing principles of the human
TF regulatory network.

INTRODUCTION

Sequence-specific transcription factors (TFs) are the key effec-

tors of eukaryotic gene control. Human TFs regulate hundreds

to thousands of downstream genes (Johnson et al., 2007). Of

particular interest are interactions in which a given TF regulates

other TFs, or itself. Such mutual cross-regulation among groups

of TFs defines regulatory subnetworks that underlie major

features of cellular identity and complex functions such as

pluripotency (Boyer et al., 2005; Kim et al., 2008), development

(Davidson et al., 2002a), and differentiation (Yun and Wold,
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1996). On a broader level, cross-regulatory interactions among

the entire complement of TFs expressed in a given cell type

form a core transcriptional regulatory network, endowing the

cell with systems-level properties that facilitate the integration

of complex cellular signals, while conferring additional nimble-

ness and robustness (Alon, 2006). However, despite their cen-

tral biological roles, both the structure of core human regula-

tory networks and their component subnetworks are largely

undefined.

One of the main bottlenecks limiting generation of TF regula-

tory networks for complex biological systems has been that

information is traditionally collected from individual experiments

targeting one cell type and one TF at a time (Davidson et al.,

2002a; Yuh et al., 1994; Kim et al., 2008; Roy et al., 2010;

Gerstein et al., 2010). For example, the sea urchin endomeso-

derm regulatory network was constructed by individually per-

turbing the expression and activity of several dozen TFs and

analyzing the effect of these perturbations on the expression of

TF genes containing putative cis-regulatory binding elements

for these factors (Davidson et al., 2002b; Yuh et al., 1994). More

recently, genome-wide analysis combining chromatin immuno-

precipitation of individual TFs with high-throughput sequencing

(ChIP-seq) has been used to derive subnetworks of small

numbers of TFs, such as those involved in pluripotency (Kim

et al., 2008), or larger-scale networks combining several dozen

TFs (Roy et al., 2010; Gerstein et al., 2010). However, such

approaches are limited by three major factors: (1) the availability

of suitable affinity reagents; (2) the difficulty of interrogating the

activities of multiple TFs within the same cellular environment;

and, perhaps most critically, (3) the sizable number of TFs and

cellular states that need to be studied. De novo network

construction methods based on gene expression correlations

partly overcome the limitation of studying one TF at a time but

lack directness and typically require several hundred indepen-

dent gene expression perturbation studies to build a network

for one cell type (Basso et al., 2005; Carro et al., 2010). Similarly,

yeast one-hybrid assays offer a high-throughput approach for

identifying cis-regulatory element binding partners (Walhout,
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2006; Reece-Hoyes et al., 2011). However, such assays lack

native cellular context, limiting their direct utility for building

cell-type-specific networks. Given these experimental limita-

tions, only a handful of well-described multicellular transcrip-

tional regulatory networks have been defined, and those that

do exist are often incomplete despite the numerous experiments

and extended time (typically years) needed to construct them

(Davidson et al., 2002a; Basso et al., 2005; Boyer et al., 2005;

Kim et al., 2008; Roy et al., 2010; Gerstein et al., 2010).

Given that the human genome encodes > 1,000 TFs (Vaquer-

izas et al., 2009) and that human cellular diversity spans

hundreds of different cell types and an even greater number

of cellular states, we sought to develop an accurate and scalable

approach to analyze transcriptional regulatory networks suitable

for the application to any cellular or organismal state. The dis-

covery of DNaseI footprinting over 30 years ago (Galas and

Schmitz, 1978) revolutionized the analysis of regulatory se-

quences in diverse organisms and directly enabled the discovery

of the first human sequence-specific TFs (Dynan and Tjian,

1983). In the context of living nuclear chromatin, DNaseI treat-

ment preferentially cleaves the genome within highly accessible

active regulatory DNA regions, creating DNaseI-hypersensitive

sites (DHSs) (Wu et al., 1979; Kuo et al., 1979; Wu, 1980; Stalder

et al., 1980). Within DHSs, DNaseI cleavage is not uniform but is

rather punctuated by sequence-specific regulatory factors that

occlude bound DNA, leaving ‘‘footprints’’ that demarcate TF

occupancy at nucleotide resolution (Hesselberth et al., 2009;

Pfeifer and Riggs, 1991). DNaseI footprinting is a well-estab-

lished method for identifying direct regulatory interactions and

provides a powerful generic approach for assaying the occu-

pancy of specific sequence elements with cis-regulatory func-

tions (Karin et al., 1984; Kadonaga et al., 1987).

DNaseI footprinting has been applied widely to study regula-

tory interactions between TFs and to identify cell- and lineage-

selective transcriptional regulators (Dynan and Tjian, 1983; Karin

et al., 1984; Tsai et al., 1989). In the context of the ENCODE

Project, we applied digital genomic footprinting (Hesselberth

et al., 2009) to delineate millions of human DNaseI footprints

genome-wide in 41 diverse cell types. Combining DNaseI foot-

prints with defined TF recognition sequences accurately and

quantitatively recapitulates ChIP-seq data for individual TFs,

while simultaneously interrogating the genomic occupancy of

potentially all expressed DNA-binding factors in a single

experiment (Neph et al., 2012a).

By performing systematic analysis of TF footprints in the

proximal regulatory regions of each TF gene, we develop a

foundational experimental paradigm for comprehensive, unbi-

ased mapping of the complex network of regulatory interac-

tions between human TFs. In such networks, TFs comprise

the network ‘‘nodes,’’ and the cross-regulation of one TF by

another the interactions or network ‘‘edges.’’ Furthermore, iter-

ating this paradigm across diverse cell types provides a powerful

system for analysis of TF network dynamics in a complex

organism. Here, we use genome-wide maps of in vivo DNaseI

footprints to assemble an extensive core human regulatory

network comprising connections among 475 sequence-specific

TFs and analyze the dynamics of these connections across 41

diverse cell and tissue types.
C

RESULTS

Comprehensive Mapping of TF Networks in Diverse
Human Cell Types
To generate TF regulatory networks in human cells, we analyzed

genomic DNaseI footprinting data from 41 diverse cell and tissue

types (Neph et al., 2012a). Each of these 41 samples was treated

with DNaseI, and sites of DNaseI cleavage along the genome

were analyzed with high-throughput sequencing. At an average

sampling depth of �500 million DNaseI cleavages per cell type

(of which �273 million mapped to unique genomic positions),

we identified an average of�1.1 million high-confidence DNaseI

footprints per cell type (range 434,000 to 2.3 million at a false

discovery rate of 1% [FDR 1%]; Neph et al., 2012a). Collectively,

we detected 45,096,726 footprints, representing cell-selective

binding to �8.4 million distinct 6–40 bp genomic sequence

elements. We used well-annotated databases of TF-binding

motifs to infer the identities of factors occupying DNaseI foot-

prints (Wingender et al., 1996; Bryne et al., 2008; Newburger

and Bulyk, 2009) (Experimental Procedures) and confirmed

that these identifications matched closely and quantitatively

with ENCODE ChIP-seq data for the same cognate factors

(Neph et al., 2012a).

To generate a TF regulatory network for each cell type, we

analyzed actively bound DNA elements within the proximal regu-

latory regions (i.e., all DNaseI hypersensitive sites within a 10 kb

interval centered on the transcriptional start site [TSS]) of 475 TF

genes with well-annotated recognition motifs (Wingender et al.,

1996; Bryne et al., 2008; Newburger andBulyk, 2009) (Figure 1A).

Repeating this process for every cell type disclosed a total of

38,393 unique, directed (i.e., TF-to-TF) regulatory interactions

(edges) among the 475 analyzed TFs, with an average of

11,193 TF-to-TF edges per cell type (Data S1). Given the func-

tional redundancy of a minority of DNA-binding motifs (Berger

et al., 2008), in certain cases multiple factors could be desig-

nated as occupying a single DNaseI footprint. However, most

commonly, mappings represented associations between single

TFs and a specific DNA element. Because DNaseI hypersensi-

tivity at proximal regulatory sequences closely parallels gene

expression (The ENCODE Project Consortium, 2012), the anno-

tation process we utilized naturally focuses on the expressed TF

complement of each cell type, enabling the construction of

a comprehensive transcription regulatory network for a given

cell type with a single experiment.

De Novo-Derived Networks Accurately Recapitulate
Known TF-to-TF Circuitry
To assess the accuracy of cellular TF regulatory networks

derived from DNaseI footprints, we analyzed several well-anno-

tated mammalian cell-type-specific transcriptional regulatory

subnetworks (Figures 1B and 1C). The muscle-specific factors

MyoD, Myogenin (MYOG), MEF2A, and MYF6 form a network

that was uncovered using a combination of genetic and physical

studies, including DNaseI footprinting, and is vital for specifica-

tion of skeletal muscle fate and control of myogenic develop-

ment and differentiation (Naidu et al., 1995; Yun and Wold,

1996; Ramachandran et al., 2008). Figure 1B juxtaposes the

known regulatory interactions between these factors determined
ell 150, 1274–1286, September 14, 2012 ª2012 Elsevier Inc. 1275
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Figure 1. Construction of Comprehensive Transcriptional Regulatory Networks

(A) Schematic for construction of regulatory networks using DNaseI footprints. Transcription factor (TF) genes represent network nodes. Each TF node has

regulatory inputs (TF footprints within its proximal regulatory regions) and regulatory outputs (footprints of that TF in the regulatory regions of other TF genes).

Inputs and outputs comprise the regulatory network interactions ‘‘edges.’’ For example: (1) In Th1 cells, the IRF1 promoter contains DNaseI footprints matching

four regulatory factors (STAT1, CNOT3, SP1, and NFKB). (2) In Th1 cells, IRF1 footprints are found upstream of many other genes (for example, GABP1, IRF7,

STAT6). (3) The same process is iterated for every TF gene in that cell type, enabling compilation of a cell-type network comprising nodes (TF genes) and edges

(regulatory inputs and outputs of TF genes). (4) Network construction is carried out independently using DNaseI footprinting data from each of 41 cell types,

resulting in 41 independently derived cell-type networks.

(B and C) Comparison of well-annotated versus de novo-derived regulatory subnetworks.

(B) Muscle subnetwork. Top, experimentally defined regulatory subnetwork for major factors controlling skeletal muscle differentiation and transcription. Arrows

indicate direction(s) of regulatory interactions between factors. Bottom, regulatory subnetwork derived de novo from the DNaseI footprint-anchored network of

skeletal myoblasts closely matches the experimentally annotated network.

(C) Pluripotency subnetwork. Top, regulatory subnetwork for major pluripotency factors defined experimentally in mouse ESCs (Kim et al., 2008). Bottom,

regulatory subnetwork derived de novo from human ESCs is virtually identical to the annotated network.

1276 Cell 150, 1274–1286, September 14, 2012 ª2012 Elsevier Inc.



in the aforementioned studies (Figure 1B, top) with the nearly

identical interactions derived de novo from analysis of the

network computed using DNaseI footprints mapped in primary

human skeletal myoblasts (HSMM) (Figure 1B, bottom).

OCT4, NANOG, KLF4, and SOX2 together play a defining role

in maintaining the pluripotency of embryonic stem cells (ESCs)

(Takahashi and Yamanaka, 2006; Takahashi et al., 2007), and a

network comprising the mutual regulatory interactions between

these factors has been mapped through systematic studies of

factor occupancy by ChIP-seq in mouse ESCs (Kim et al.,

2008) (Figure 1C, top). A nearly identical subnetwork emerges

from analysis of the TF network computed de novo from DNaseI

footprints in human ESCs (Figure 1C, bottom).

Critically, both the well-annotated muscle and ES sub-

networks are best matched by footprint-derived networks

computed specifically from skeletal myoblasts and human

ESCs, respectively, versus other cell types (Figures 1D and

1E). These findings indicate that network relationships between

TFs derived de novo from genomic DNaseI footprinting accu-

rately recapitulate well-described cell-type-selective transcrip-

tional regulatory networks generated with multiple experimental

approaches.

TF Regulatory Networks Show Marked Cell Selectivity
We next analyzed systematically the dynamics of TF regulatory

networks across cell types. Four hundred and seventy-five

TFs theoretically have the potential for 225,625 combinations

of TF-to-TF regulatory interactions (or network edges). However,

only a fraction of these potential edges are observed in each cell

type (�5%), and most are unique to specific cell types (Fig-

ure S1A available online).

To visualize the global landscape of cell-selective versus

shared regulatory interactions, we first computed the broad

landscape of network edges that are either specific to a given

cell type or found in networks of two or more cell types (Figure 2;

Table S1). This revealed that regulatory interactions were in

general highly cell selective, though the proportion of cell-selec-

tive interactions varied from cell type to cell type. Network edges

were most frequently restricted to a single cell type, and collec-

tively the majority of edges were restricted to four or fewer cell

types (Figure S1A). By contrast, only 5% of edges were common

to all cell types (Figure S1A). Interestingly, when comparing

networks, we found more common edges than common DNaseI

footprints (Figures S1B and S1C), implying that a given transcrip-

tional regulatory interaction can be generated using distinct

DNA-binding elements in different cell types.

To explore the regulatory interaction dynamics of limited

sets of related factors, we plotted the regulatory network

edges connecting four hematopoietic regulators and four plurip-

otency regulators in six diverse cell types (Figure 3A). This anal-

ysis clearly highlighted the role of cell-type-specific factors

within their cognate cell types: regulatory interactions between
(D and E) De novo-derived subnetworks in (B) and (C) match the annotated networ

similarity, comparing the annotated subnetwork with regulatory interactions betw

(horizontal axes). For the annotated muscle subnetwork, the highest similarity

contrast, subnetworks computed from fibroblasts are largely devoid of relevant in

seen in human ESCs (H7-ESC).

C

pluripotency factors within the ESC network and hematopoietic

factors within the network of hematopoietic stem cells (Fig-

ure 3A). Next, we plotted the complete set of regulatory interac-

tions among all 475 edges between the same six diverse cell

types, exposing a high degree of regulatory diversity (Figure 3B;

Table S1).

Edges unique to a cell type typically form a well-connected

subnetwork (Figures S1D–S1F; Table S2), implying that cell-

type-specific regulatory differences are not driven merely by

the independent actions of a few TFs but rather by organized

TF subnetworks. In addition, the density of cell-selective net-

works varies widely between cell types (e.g., compare ESCs to

skeletal myoblasts in Figure 3B). These observations underscore

the importance of using cell-type-specific regulatory networks

when addressing specific biological questions.

Functionally Related Cell Types Share Similar Core
Transcriptional Regulatory Networks
We next sought to determine the degree of relatedness between

different TF networks. To obtain a quantitative global summary

of the factors contributing to each cell-type-specific network,

we computed for each cell type the normalized network degree

(NND)—a vector that encapsulates the relative number of inter-

actions observed in that cell type for each of the 475 TFs

(Alon, 2006). To capture the degree to which different cell-type

networks utilize similar TFs, we clustered all cell-type net-

works based on their NND vector (Figure 4A). The resulting

network clusters—obtained from an unbiased analysis—strik-

ingly parallel both anatomical and functional cell-type groupings

into epithelial and stromal cells; hematopoietic cells; endothelia;

and primitive cells including fetal cells and tissues, ESCs, and

malignant cells with a ‘‘dedifferentiated’’ phenotype (Figure 4A;

compare the manually curated groupings in Figure 2). This

result suggests that transcriptional regulatory networks from

functionally similar cell types are governed by similar factors.

Furthermore, this result suggests a framework for understanding

how minor perturbations in network composition might enable

transdifferentiation among related cell types (Graf and Enver,

2009).

To identify the individual TFs driving the clustering of related

cell-type networks, we computed the relative NND (i.e., the

normalized number of connections) of each TF across the 41

cell types. This approach uncovered numerous specific factors

with highly cell-selective interaction patterns, including known

regulators of cellular identity important to functionally related

cell types (Figure 4B). For instance, PAX5 is most highly con-

nected in B cell regulatory networks, concordant with its function

as a major regulator of B-lineage commitment (Nutt et al., 1999).

Similarly, the neuronal developmental regulator POU3F4 (Shima-

zaki et al., 1999)playsaprominent role specifically inhippocampal

astrocyte and fetal brain regulatory networks, whereas the

cardiac developmental regulator GATA4 (Molkentin et al., 1997)
ks in a cell-specific fashion. Vertical axes: Jaccard index, a measure of network

een the four factors derived de novo from each of 41 cell types independently

is seen in skeletal myoblasts, followed by differentiated skeletal muscle. By

teractions. For the annotated pluripotency subnetwork, the highest similarity is
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Figure 2. Cell-Specific versus Shared

Regulatory Interactions in TF Networks of

41 Diverse Cell Types

Shown for each of 41 cell types are schematics

of cell-type-specific (yellow) versus -nonspecific

(black) regulatory interactions between 475 TFs.

Each half of each circular plot is divided into 475

points (not visible at this scale), one for each TF.

Lines connecting the left and right half-circles

represent regulatory interactions between each

factor and any other factors with which it interacts

in the given cell type. Yellow lines represent TF-to-

TF connections that are specific to the indicated

cell type. Black lines represent TF-to-TF connec-

tions that are seen in two or more cell types. The

order of TFs along each half-circular axis is shown

in Table S1 and represents a sorted list (de-

scending order) of their degree (i.e., number of

connections to other TFs) in the ESC network,

from highest degree on top (SP1) to lowest degree

on bottom (ZNF354C). Cell types are grouped

based on their developmental and functional

properties. Insert on bottom right shows a detailed
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interactions of four pluripotent (KLF4, NANOG,
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shows the highest relative network degree in cardiac and great

vessel tissue (fetal heart, cardiomyocytes, cardiac fibroblasts,

and pulmonary artery fibroblasts).
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In addition to these known develop-

mental regulators, the network analysis

implicated many regulators with previ-

ously unrecognized roles in specification

of cell identity. For instance, HOXD9 is

highly connected specifically in endothe-

lial regulatory networks, and the early

developmental regulator GATA5 (Mac-

Neill et al., 2000) appears to play a

predominant role in the fetal lung network

(Figure 4B), providing functional insight

into the role of GATA5 as a lung tissue

biomarker (Xing et al., 2010). In addition

to factors with strong cell-selective con-

nectivity, we found a number of TFs

with prominent roles in all 41 cell-type

networks, including several known ubiq-

uitous transcriptional and genomic regu-

lators such as SP1, NFYA, CTCF, and

MAX (Figure S2).

Together, the above results demon-

strate the ability of transcriptional net-

works derived from genomic DNaseI

footprinting to pinpoint known cell-selec-

tive and ubiquitous regulators of cel-

lular state and to implicate analogous

yet unanticipated roles for many other
factors. It is notable that the aforementioned results were

derived independently of gene expression data, highlighting

the ability of a single experimental paradigm (genomic DNaseI
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Figure 3. Transcriptional Regulatory Networks Show Marked Cell-Type Specificity

(A) Cross-regulatory interactions between four pluripotency factors and four hematopoietic factors in regulatory networks of six diverse cell types. All eight factors

are arranged in the same order along each axis. Regulatory interactions (i.e., from regulator to regulated) are shown by arrows in clockwise orientation. Cell-type-

specific edges are colored as indicated, whereas regulatory interactions present in two or more cell-type networks are shown in gray.

(B) Cross-regulatory interactions between all 475 TFs in regulatory networks of six diverse cell types. The 475 TFs are arranged in the same order along each axis,

regulatory interactions directed clockwise. Edges unique to a given cell-type network are colored as indicated in the legend, whereas regulatory interactions

present in two or more networks are colored gray. Interactions present in all six cell-type networks are colored black.

See also Figure S1 and Table S2.
footprinting) to elucidate multiple intricate transcriptional regula-

tory relationships.

Network Analysis Reveals Cell-Type-Specific Behaviors
for Widely Expressed TFs
Many TFs are expressed to varying degrees in a number of

different cell types (Vaquerizas et al., 2009). A major question

is whether the function of widely expressed factors remains

essentially the same in different cells, or whether such factors

are capable of exhibiting important cell-selective actions. To

explore this question, we sought to characterize the regulatory

diversity between different cell types within the same lineage.

Hematopoietic lineage cells have been extensively characterized

at both the phenotypic and the molecular levels, and a cadre

of major transcriptional regulators, including TAL1/SCL, PU.1,

ELF1, HES1,MYB, GATA2, andGATA1, has been defined (Orkin,

1995; Swiers et al., 2006). Many of these factors are expressed

to varying degrees across multiple hematopoietic lineages and

their constituent cell types.

We analyzed de novo-derived subnetworks comprising the

aforementioned seven regulators in five hematopoietic and one

nonhematopoietic cell type (Figure 5A). For each cell-type sub-

network, we also mapped the normalized outdegree (i.e., the

number of outgoing connections) for each factor (Figure 5A).

This analysis revealed both subtle and stark differences in the

organization of the seven-member hematopoietic regulatory

subnetwork that reflected the biological origin of each cell
C

type. For example, the early hematopoietic fate-decision factor

PU.1 appears to play the largest role in the subnetworks gener-

ated from hematopoietic stem cells (CD34+) and promyelocytic

leukemia (NB4) cells (Figure 5A). The erythroid-specific regulator

GATA1 appears as a strong driver of the core TAL1/PU.1/HES1/

MYB subnetwork specifically within erythroid cells (Figure 5A),

consistent with its defining role in erythropoiesis. In both B cells

and T cells, the subnetwork takes on a directional character, with

PU.1 in a superior position. By contrast, the subnetwork is largely

absent in nonhematopoietic cells (muscle, HSMM) (Figure 5A,

bottom right). These findings demonstrate that analysis of the

network relationships of major lineage regulators provides a

powerful tool for uncovering subtle differences in transcriptional

regulation that drive cellular identity between functionally similar

cell types.

We next extended this analysis to determine whether we could

identify commonly expressed factors that manifest cell-type-

specific behaviors. For example, the retinoic acid receptor-

alpha (RAR-a) is a constitutively expressed factor involved in

numerous developmental and physiological processes (Sucov

et al., 1996). Rather than simply measuring the degree of con-

nectivity of RAR-a to other factors across different cell types,

we sought to quantify the behavior of RAR-a within each cellular

regulatory network by determining its position within feedfor-

ward loops (FFLs). FFLs represent one of the most important

network motifs in biological and regulatory systems and com-

prise a three-node structure in which information is propagated
ell 150, 1274–1286, September 14, 2012 ª2012 Elsevier Inc. 1279
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Figure 4. Functionally Related Cell Types Share Similar Core Transcriptional Regulatory Networks

(A) Clustering of cell-type networks by normalized network degree (NND). For each of 475 TFs within a given cell-type network, the relative number of edges was

compared between all 41 cell types using a Euclidean distance metric and Ward clustering. Cell types are colored based on their physiological and/or functional

properties.

(B) Relative degree of master regulatory TFs in cell-type networks. Shown is a heatmap representing the relative normalized degree of the indicated TFs between

each of the 41 cell types. For a given TF and cell type, high relative degree indicates high connectivity with other TFs in that cell type. Note that the relative degree

of known regulators of cell fate such as MYOD, OCT4, or MYB is highest in their cognate cell type or lineage. Similar patterns were found for other TFs without

previously recognized roles in specification of cell identify.

See also Figure S2.
forward from the top node through the middle to the bottom

node, with direct top node-to-bottom node reinforcement (Milo

et al., 2002; Alon, 2006). For each cell type, we quantified

the number of FFLs containing RAR-a at each of the three

different positions (top versus middle versus bottom; Figure 5B,

top). In most cell types, RAR-a chiefly participates in FFLs at

‘‘passenger’’ positions 2 and 3 (Figure 5B). However, within

blood and endothelial cells, RAR-a switches from being a

passenger to being a driver (top position) of FFLs. Strikingly, in

acute promyelocytic leukemia (APL) cells, RAR-a acts as a

uniquely potent driver of FFLs, occurring exclusively in the driver

position—a feature unique among all cell types (Figure 5B).

APL is characterized by an oncogenic t(15;17) chromosomal

translocation that results in a RAR-a/PML fusion protein that

misregulates RAR-a target sites (Grignani et al., 1993, 1998).

Our results suggest that in APL cells, RAR-a is additionally

altering the basic organization of the regulatory network. Criti-

cally, using DNaseI footprint-driven network analysis, we identi-

fied the prominent role of RAR-a in APL cells without any prior
1280 Cell 150, 1274–1286, September 14, 2012 ª2012 Elsevier Inc.
knowledge of the role of RAR-a in the oncogenic transformation

of APL cells. This suggests that network analysis is capable of

deriving vital pathogenic information about specific factors in

abnormal cell types, given a sufficient analyzed spectrum of

normal cellular networks. On amore general level, the aforemen-

tioned results show clearly that marked cell-selective functional

specificities of commonly expressed proteins can be exposed

by analyzing factors within the context of their peers.

The Common ‘‘Neural’’ Architecture of Human TF
Regulatory Networks
Complex networks from diverse organisms are built from a set

of simple building blocks termed network motifs (Milo et al.,

2002). Network motifs represent simple regulatory circuits,

such as the FFL described above. The topology of a given net-

work can be reflected quantitatively in the normalized frequen-

cies (normalized z-score) of different network motifs. Specific

well-described motifs including FFL, ‘‘clique,’’ ‘‘semi-clique,’’

‘‘regulated mutual,’’ and ‘‘regulating mutual’’ are recurrently



A

Th1 T-Lymphocytes
(Th1)

Skeletal Muscle Myoblasts
(HSMM)

B-Lymphocytes
(CD20+)

Hematopoie�c Stem Cells
(CD34+)

Erythroid Cells
(K562)

Promyelocy�c Cells
(NB4)

B

RAR-a

TF2

TF1

RAR-a

TF3

TF1RAR-a

TF2

TF3Cell type

Epithelium

& Stroma

Endothelia

Blood

Cancer

ES cells

Fetal Cells

& Tissue

176

3750

Feed-forward loops with
RAR-a at the indicated posi�onHematopoie�c cell-types

Non-Hematopoie�c cell-type

High

Low
Normalized outdegree

of the indicated TF

Erythroid (K562)

ES Cells (H7-hESC)

Small Airway Epi.
Renal Cor�cal Epi.

Fetal Brain
Hippocampal Astrocyte

Fetal Heart
Fetal Lung

Neuroblastoma (SK-N-SH_RA)
Liver Carcinoma (HepG2)

Hemat. Stem Cell (CD34+)
Promyelocy�c Leukemia (NB4)

B-Lymphocyte (CD20+)

Th1 T-Lymphocyte (TH1)

B-Lymphocyte (GM12865)
B-Lymphocyte (GM06990)

Adult Derm. Blood
Lung Lympha�c

Neonatal Derm. Lympha�c
Neonatal Derm. Blood

Esophageal Epi.
Foreskin Fib.

Skin Fib.
Adult Dermal Fib.

Skeletal Muscle
Skeletal Myoblast 

Periodontal Fib.

Mammary Fib.

Neonatal Dermal Fib.
Mesenchymal Fib.

Astrocytes

Amnio�c Epi.

Lung Fib. (IMR90)

Aor�c Fib.

Pulmonary Fib.

Lung Fib.

Choroid Plexus Epi.
Iris Pigment Epi.

Pulmonary Artery Fib.

Cardiac Myocyte
Cardiac Fib.

Figure 5. Cell-Selective Behaviors of Widely Expressed TFs

(A) Shown are regulatory subnetworks comprising edges (arrows) between seven major hematopoietic regulators in five hematopoietic and one non-

hematopoietic cell types. For each TF, the size of the corresponding colored oval is proportional to the normalized out-degree (i.e., out-going regulatory

interactions) of that factor within the complete network of each cell type. The early hematopoietic fate decision factor PU.1 appears to play the largest role in

hematopoietic stem cells (CD34+) and in promyelocytic leukemia (NB4) cells. The erythroid-specific regulator GATA1 appears as a strong driver of the core TAL1/

PU.1/HES1/MYB network specifically within erythroid cells. In both B cells and T cells, the subnetwork takes on a directional character, with PU.1 in a superior

position. By contrast, the network is largely absent in nonhematopoietic cells (muscle, HSMM, bottom right).

(B) Heatmap showing the frequency with which RAR-a is positioned as a driver (top) or passenger (middle or bottom) within FFLs mapped in 41 cell-type

regulatory networks. Note that in most cell types, RAR-a participates in FFLs at ‘‘passenger’’ positions 2 and 3. However, within blood and endothelial cells,

RAR-a switches from being a passenger of FFLs to being a driver (top position) of FFLs. In acute promyelocytic leukemia cells (NB4), RAR-a acts exclusively as

a potent driver of FFLs. Cell types are arranged according to the clustered ordering in Figure 4.
found at higher than expected frequencies within diverse biolog-

ical networks (Milo et al., 2002, 2004). We therefore sought to

analyze the topology of the human TF regulatory network and

to compare it with those of well-annotated multicellular biolog-

ical networks.

We first computed the relative frequency and relative enrich-

ment or depletion of each of the 13 possible three-node network

motifs within each cell-type regulatory network. Next, we com-

pared the results for each cell-type network with the relative

enrichment of three-node network motifs found in perhaps the

best annotated multicellular biological network, the C. elegans

neuronal connectivity network (White et al., 1986). This compar-

ison revealed striking similarity between the topologies of human

TF networks and the C. elegans neuronal network (Figure 6A;

Table S3). Remarkably, in spite of their cell selectivity, the topol-

ogies of each TF network were nearly identical. Notably, the

human TF regulatory network topology also closely resembles

that of other well-described networks, including the sea-urchin

endomesoderm specification network (Davidson et al., 2002a),

the Drosophila developmental transcriptional network (Serov

et al., 1998), and the mammalian signal transduction network
C

(Milo et al., 2004) (Figure S3A), consistent with universal princi-

ples for multicellular biological information processing systems

(Milo et al., 2004).

To test the sensitivity of the above findings to the manner in

which the human transcriptional regulatory networks were deter-

mined, we recomputed this network solely from scanned TF-

binding sites within the promoter-proximal regions of each TF

gene, without considering whether the motifs were localized

within DNaseI footprints. Using this approach, the remarkable

similarity of the footprint-derived TF networks to the neuronal

network was almost completely lost (Figure 6B). This result

affirms the criticality of in vivo footprints for biologically meaning-

ful network inference.

Next, we sought to determine whether the observed similarity

to the neuronal network was a collective property of human TF

networks. To test this, we computed a transcriptional regulatory

network from the combined regulatory interactions of all 41 cell

types and determined the enrichment of network motifs within

this network. The resulting network topology diverges consider-

ably from that of the neuronal network (Figure 6C), far more so

than was observed for any individual cell type (Figure 6A). This
ell 150, 1274–1286, September 14, 2012 ª2012 Elsevier Inc. 1281
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Figure 6. Conserved Architecture of Human TF Regulatory Networks
(A) Shown is the relative enrichment or depletion of the 13 possible three-node architectural network motifs within the regulatory networks of each cell type (red

lines), compared with the relative enrichment of the same motifs in the C. elegans neuronal connectivity network. Note that the network architecture of each

individual cell type closely mirrors that of the living neuronal network (average SSE of only 0.0705).

(B) Enrichment of each triad network motif for a TF network computed using only motif scan predictions within ± 5 kb of TF promoters (brown line). The resulting

network bears little resemblance to the C. elegans network (blue line) (SSE of 2.536).

(C) The relative enrichment of different triad network motifs is shown for a TF regulatory network generated by pooling DNaseI footprints from all 41 tested cell

types into a single archetype (orange line). The resulting topology diverges considerably from that of the neuronal network, far more so than was observed for any

individual cell type (SSE of 0.4308).

(D and E) Network architectures are highly cell specific. (D) Overlap of FFLs identified in three different progenitor cell types—ESCs (H7-hESC), hematopoietic

stem cells (CD34+), and HSMM. Note that most FFLs are restricted to an individual cell type.

(E) Overlap of FFLs identified in three pulmonary cell types—lung fibroblasts (NHLF), small airway epithelium cells (SAECs), and pulmonary lymphatic endothelium

cells (HMVEC_LLy). Highly distinct architectures are present even among cell types from the same organ structure.

(F) Overlap of FFLs from networks of neighboring cell types, following the ordering and coloration shown in Figure 4A. The size of each circle is proportional to the

number of FFLs contained within the network of the corresponding cell type. The color of the intersection region between adjacent cell types indicates the

Jaccard index between FFLs from those two cell types (see legend in upper right). The average number of FFLs in each network, the total number of FFLs across

all networks, and the number of common FFLs across all networks are indicated in the center of the graph.

See also Figure S3 and Table S3.
result suggests that the regulatory interactions within each cell-

type network are independently balanced to achieve a specific

architecture, and that pooling multiple cellular networks together

degrades this balance.

Finally, to assess whether a common core of regulatory inter-

actions might be driving the conserved network architecture,

we compared FFLs between biologically similar cell types. This

comparison revealed marked diversity among different cellular
1282 Cell 150, 1274–1286, September 14, 2012 ª2012 Elsevier Inc.
TF networks (Figures 6D and 6E), going beyond that observed

among individual edges (Figures S3C and S3D). Indeed, only

�0.1% of all observed FFLs across 41 cell types (784/558,841)

were common to all cell types (Figures 6F and S3E). Moreover,

only a minority of the TFs represented within a given cellular

network contribute to the enriched network motifs (Figure S3F).

These findings indicate that the conserved ‘‘neuronal’’ network

architecture (Figure 6A) of the human TF regulatory network is



specified independently in each cell type using a distinct set of

balanced regulatory interactions.

DISCUSSION

TF regulatory networks are foundational to biological systems.

Collectively, our results highlight the power of regulatory net-

works derived from genomic DNaseI footprint maps to provide

accurate large-scale depictions of regulatory interactions in

human cells, and they suggest that such interactions are gov-

erned by a core set of organizing principles shared with other

multicellular information processing systems.

In a classic treatise, Waddington proposed that the epigenetic

landscape of a cell is ‘‘buttressed’’ by complex interactions

among multiple regulatory genes (Waddington, 1939, elabo-

rated in Waddington, 1957). These genes—now recognized as

sequence-specific transcriptional regulators—form an extended

‘‘cognitive’’ network that enables the simultaneous integration of

multiple internal and external cues and conveys this information

to specific effector genes along the genome. Consequently,

transcriptional regulatory networks influence both the current

chromatin landscape of a cell as well as its epigenetic state, im-

parting a type of ‘‘memory’’ that may impact subsequent cellular

fate decisions (Waddington, 1957; Groudine and Weintraub,

1982). Such characteristics render TF regulatory networks ideal

for governing complex processes such as pluripotency (Boyer

et al., 2005; Kim et al., 2008), development (Davidson et al.,

2002a), and differentiation (Yun and Wold, 1996). However,

despite their central role in human pathology and physiology,

human transcriptional regulatory networks are presently poorly

understood.

The networks we describe here for 41 diverse cell types

provide an extensive description of the circuitry, dynamics,

and organizing principles of the human TF regulatory network.

The derivation of regulatory networks from genomic DNaseI

footprint maps provides a general, scalable solution for mapping

and analyzing cell-selective transcriptional regulatory networks

in complex multicellular organisms. By comparison, generation

of networks of this size across 41 cell types using traditional

approaches such as perturbation or ChIP-seq would have

required nearly 20,000 individual experiments. By contrast, the

approach we describe can readily scale beyond the 475 factors

analyzed in the current study and is constrained only by the avail-

ability of accurate TF recognition sequences.

Our analysis of transcriptional regulatory interactions in a

network context has uncovered several novel features of human

transcriptional regulation, some quite striking.

First, we observed that human transcriptional regulatory net-

works are markedly cell type specific, with only �5% of all regu-

latory interactions common across the 41 tested cell types. This

finding highlights the regulatory diversity within humans and

underscores the importance of analyzing cell-selective regula-

tory networks when addressing specific biological questions.

Second, by detecting factors that predominantly contribute to

the transcriptional regulatory networks of only one or a few cell

types, we identified both known and novel regulators of cellular

identity (Figure 4B). Differences between cell types thus encode

a surprisingly rich landscape of information concerning differen-
C

tiation and developmental processes, and this landscape can be

systematically mined for regulatory insights.

Third, we found that commonly expressed TFs within a given

cell lineage play distinct roles in the governance of regulatory

networks of different cells within that lineage. Our analysis

discovered that in acute promyelocytic leukemia cells, thewidely

expressed RAR-a shifts from being a passenger of FFLs to being

a strong driver of FFLs. This finding provides insights into the

broader—and more fundamental—regulatory alterations that

accompany the RAR-a/PML fusion protein unique to acute pro-

myelocytic leukemia. On a general level, our results show that

commonly expressed proteins may display highly cell-selective

actions, and that such activities may be brought to light by

analyzing TFs in the context of their peers.

Finally, in marked contrast to the high regulatory diversity

between cell types, we found that all cell-type regulatory net-

works converge on a common network architecture that closely

mirrors the topology of the C. elegans neuronal connectivity

network and those of other multicellular information processing

systems (Milo et al., 2004), highlighting a fundamental similarity

in the structure and organizing principles of these biological

systems. Strikingly, this common architecture is independently

fashioned in each cell type and results from the delicate balance

of distinct regulatory interactions.

Despite the experimental and computational advantages

and successes of our approach, a number of additional steps

could be used to refine and improve our regulatory interaction

networks. First, as noted above, our approach is limited by the

availability of recognition sequences for specific TFs. The

pending availability of both more and higher-quality recognition

sequences through approaches such as protein-binding micro-

arrays (Berger et al., 2008; Badis et al., 2009) and SELEX-seq

(Jolma et al., 2010; Slattery et al., 2011) promises to expand

considerably the horizons of human transcriptional network

analysis. Such refined data may enable differentiation of factors

that currently appear to bind similar recognition sequences.

Second, the model that we described undervalues the role

of distal regulatory elements, which can exert major influences

on gene expression. Because enhancers can act over long

distances, association of a given distal regulatory element with

a specific TF gene is at present difficult. We therefore focused

on footprints in DHSs within a 10 kb region that is centered on

the TSS—a region in which most regulatory interactions are ex-

pected to be directed to the local TSS. Although large numbers

of distal regulatory DNA regions marked by DNaseI-hypersensi-

tive sites are now available through the ENCODE (The ENCODE

Project Consortium, 2012) and Roadmap Epigenomics (Bern-

stein et al., 2010) projects, the assignment of distal regulatory

elements to their cognate gene(s) has proven to be a formidable

challenge. Third, the approach we utilized does not take into

account indirect regulatory interactions (e.g., tethering) that

may affect the expression of a given TF gene (Davidson et al.,

2002b; Rigaud et al., 1991; Biddie et al., 2011). Systematic

cross-comparisons between DNaseI footprint and TF ChIP-seq

data drawn from the same cell type should enable recognition

of such indirect interactions and derivation of rules (e.g., teth-

ering partners) that may enable larger-scale modeling of such

interactions (Neph et al., 2012a).
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In order to interpret human regulatory networks at the organ-

ismal level, it will be necessary to analyze cell-selective regula-

tory networks within the context of surrounding tissues (Barabási

and Oltvai, 2004). As initially described by Spemann over 90

years ago, the identity of a given cell can be largely dictated by

its surrounding tissue (Spemann, 1918). Consequently, during

both normal development and physiological function, the regula-

tory landscape of one cell type may become intricately depen-

dent upon that of its neighbors (reviewed in Waddington,

1940). In this context, it is notable that we observed large diver-

sity between the regulatory landscapes of distinct lung cell types

(Figure 6E), which highlights the complexity that exists within

neighboring tissue from the same organ.

In summary, our results provide a description of the circuitry,

dynamics, and organizing principles of the human TF regula-

tory network. Systematically applied, the approach we have

described has the potential to expand greatly our horizons on

the mechanism, architecture, and epistemology of human gene

regulation.

EXPERIMENTAL PROCEDURES

Regulatory Network Construction

We used GeneCards (Rebhan et al., 1997) and UniProt Knowledgebase

(Magrane and Consortium, 2011) to map motif-binding protein information

found in TRANSFAC to 538 coding genes. Some genes were indistinguishable

when viewed from a potential motif-binding event perspective, as their

respective gene products were annotated as binders to the same set of

motif templates by TRANSFAC. In such cases, we chose a single gene,

randomly, as a representative and removed others, which reduced the

number of genes from 538 to 475. Networks built by removing the first redun-

dant motif, alphabetically, or by including all redundant motifs showed very

similar properties to the one described in this paper (Figure S3B and data

not shown).

We symmetrically padded the TSSs of the remaining genes by 5 kb and

scanned for predicted TRANSFAC motif-binding sites using FIMO (Bailey

et al., 2009), version 4.6.1, with a maximum p value threshold of 1 3 10�5

and defaults for other parameters. For each cell type, we filtered putative

motif-binding sites to those that overlapped footprints as previously described

(Neph et al., 2012a). Each network contained 475 nodes, one per gene. A

directed edge was drawn from a gene node to another when a motif instance,

potentially bound by the first gene’s protein product, was found within a

DNaseI footprint contained within 5 kb of the second gene’s TSS, indicating

regulatory potential. Table S3 shows the number of such edges in every cell-

type-specific network.

Network Clustering

We counted the total number edges for every TF gene node (sum of in and out

edges) in a cell type and calculated the proportion of edges for that TF relative

to all edges (NND). We used the NND vectors to compute the pairwise

euclidean distances between cell types, andwe usedWard clustering to group

the cell types (Ward, 1963). We observed similar cluster patterns when

comparing normalized in-degree, normalized out-degree, or un-normalized

total degree (results not shown).

Triad Significance Profiles

We removed self-edges from every network and used the mfinder software

tool for network motif analysis (Milo et al., 2004). A z-score was calculated

over each of 13 network motifs of size 3 (three-node network motifs), using

250 randomized networks of the same size to estimate a null. We vectorized

z-scores from every cell type and normalized each to unit length to create triad

significance profiles (TSP) as described in Milo et al. (2004). We computed the

average TSP over all cell-type-specific regulatory networks and compared to
1284 Cell 150, 1274–1286, September 14, 2012 ª2012 Elsevier Inc.
the TSP of the highly curated multicellular information processing networks

described in Milo et al. (2004).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

three figures, three tables, and one data file and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2012.04.040.
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WEB RESOURCES

A TF network browser is available for visualization and comparison of cell-type

TF networks and subnetworks: http://www.regulatorynetworks.org/.

The browser can be used to display thewiring of any selected group of TFs and

to examine their dynamics across different cell types.
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