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EXTENDED EXPERIMENTAL PROCEDURES

Regulatory Network Construction
We mapped motif-binding protein information found in TRANSFAC to 538 coding genes, using GeneCards (Rebhan et al., 1997)

and UniProt Knowledgebase (Magrane and Consortium, 2011). Due to database annotations, some of these 538 coding genes

were indistinguishable, as multiple genes were annotated as binders to the same set of motif templates by TRANSFAC. In such

cases, we chose a single gene, randomly, as a representative and removed others. This reduced the number of genes from

538 to 475. Additionally, we included in this final set motif models for SOX2, OCT4, and KLF4 from the JASPAR Core database

(Bryne et al., 2008).

We symmetrically padded the TSSs of these 475 genes by 5 kb and scanned for predicted TRANSFAC motif-binding sites using

FIMO (Bailey et al., 2009), version 4.6.1, with a maximum p value threshold of 1 3 10�5 and defaults for other parameters. For each

cell type, we filtered putativemotif binding sites to those that overlapped footprints by at least 3 nt using BEDOPS (Neph et al., 2012b)

as previously described (Neph et al., 2012a). Each network contained 475 nodes, one per gene. A directed edge was drawn from

a gene node to another when a motif instance, potentially bound by the first gene’s protein product, was found within a DNaseI foot-

print contained within 5 kb of the second gene’s TSS, indicating regulatory potential. Table S3 shows the number of edges in every

cell-type-specific network.

An approximately 150 nt region of duplicated sequence in the proximal regulatory region of the NANOG gene, with high sequence

similarity to a single region proximal to a nearby NANOG pseudogene, prevented many DNaseI-seq reads from mapping per our

usual procedure. To identify DNaseI footprints within this central promoter site, we mapped all non-uniquely-mappable reads falling

within ± 5 kb of the TSS of theNANOG gene in each cell type.We then performed standard footprint detection on this region as previ-

ously described (Neph et al., 2012a), except that we did not filter footprints with >20% of its length covering non-uniquely-mappable

locations. TF-binding elements within these DNaseI footprints were included in our final networks.

Network Visualization
We identified interactions that were unique to a single cell type, or ‘‘cell specific,’’ and marked those found in two or more of the 41

tested cell types as ‘‘common.’’ Interactions were rendered with Circos (Krzywinski et al., 2009), version 0.55. Within Circos nomen-

clature, two pseudo-chromosomes (ideograms) represent identically sorted lists of ‘‘regulator’’ and ‘‘regulated’’ factors, with

a directed edge between ideograms indicating that the first factor regulates the second. Ideograms were colored by association

of the cell type with tissue category. Unique and common interactions between ideogramswere labeled with yellow and black colors,

respectively, to visually differentiate cell types by the number and distribution of edges. TFs were oriented along both ideograms by

the sort order provided by theH7-hESC cell type, from highest degree (SP1) to lowest (ZNF354C) (Table S1). For the detail view of H7-

hESC, we also highlighted the interactions of four pluripotent (KLF4, NANOG, POU5F1, SOX2) and four constitutive factors (SP1,

CTCF, NFYA, MAX) with purple and green edges, respectively.

Hive Plots
We generated a hive plot (Krzywinski et al., 2011) using the R library HiveR, version 0.2.1, to visualize directed interactions for four

hematopoietic (PU.1, TAL1, ELF1, GATA2) and four pluripotent factors (KLF4, NANOG, OCT4, SOX2) among six cell types (H7-hESC,

HRCEpiC, CD34+, HMVEC_dBlNeo, fBrain, and HSMM). The hive plot was divided into six sections, one for each cell type. Reading

the figure in clockwise fashion, a directed edge drawn from one axis to the next indicates the first gene regulating the second. Genes

were oriented identically along each axis. Common interactions were defined by an interaction existing in two or more cell types. A

second qualitative hive plot was created between the same six cell types and over all 475 TFs (Table S1).

Unique Edge Connectedness
We calculated the mean weakly connected component size using edges unique to a cell type (Figures S1D–S1F and Table S2). To

identify whether these unique component subnetworks were more connected than would be expected by chance, we randomly sub-

sampled the same number of real edges in the same cell type and recalculated the mean-component size. This process was iterated

100,000 times, and the number of times for a cell type that the mean-component size in random graphs equaled or exceeded that of

the unique component graph counterpart was tallied. An empirical p value was calculated as the tally plus one divided by 100,000.

Subnetworks made up of unique edges belonging to each of HSMM, HRCEpiC, and H7-hESC were separately plotted using Cyto-

scape (Figures S1D–S1F) (Smoot et al., 2011).

Network Clustering
We counted the total number edges for every TF gene node (sum of in and out edges) in a cell type and calculated the proportion of

edges for that TF relative to all edges in that cell type (NND). We computed the pairwise euclidean distances between cell types using

the rescaled NND vectors and grouped the cell types usingWard clustering (Ward, 1963). We observed similar cluster patterns when

comparing rescaled in-degree, rescaled out-degree, or unscaled total degree (results not shown).

Cell 150, 1–13, September 14, 2012 ª2012 Elsevier Inc. S1



Cell-Type-Specific Behaviors
We utilized the mfinder software (Milo et al., 2004), version 1.20, to pull out all FFL instances in regulatory networks. Prior to using the

software, all self-edges, those froma TF gene node to itself, were removed per the requirements of the software. The software param-

eters were set to -ospmem < motif-number > -maxmem 1000000 -s 3 -r 250 -z �2000, where < motif-number > was one of 13

possible unique three-node network motif identifiers.

Triad Significance Profiles
We removed self-edges from every network and used themfinder software tool for networkmotif analysis (Milo et al., 2004). A z-score

was calculated over each of 13 networkmotifs of size 3 (three-node networkmotifs), using 250 randomized networks of the same size

to estimate a null. We vectorized z-scores from every cell type and normalized each to unit length to create TSP as described in Milo

et al. (2004). We computed the average TSP over all cell-type-specific regulatory networks and compared to the TSP of the highly

curated multicellular information processing networks described in Milo et al. (2004). All sum squared error (SSE) calculations were

done by comparing our derived networks against the Caenorhabditis elegans profile (White et al., 1986) (Table S3).

To generate a transcriptional network using only motif scan predictions we created a new network, with 86,242 edges, by using all

putative motifs within 5 kb of the TSSs of each of the 475 TF genes, without conditioning on footprint overlaps. We analyzed this

network using the mfinder software as described above, creating a TSP and comparing to the Caenorhabditis elegans profile.

To generate a transcriptional network from DNaseI footprints from all cell types we merged footprints across all cell types and

filtered motif instances to those overlapping the merged set by at least 3 nt using BEDOPS (Neph et al., 2012b), creating another

new network with 38,165 edges. We analyzed this network using the mfinder software as described above, creating a TSP and

comparing to the Caenorhabditis elegans profile.

Network Feature Overlaps
We compared cell-type-specific networks in greater detail using only FFLs. Summaries of overlaps were made between a small

number of cell types using Venn diagrams and barplots. All pairwise overlaps were computed and summarized using the Jaccard

index (number of FFLs in the pairwise set intersection divided by the number in the pairwise set union—Figure S3E). We additionally

computed overlaps and differences between entire regulatory networks in terms of shared and unshared edges, as well as footprints

(Figures S1B and S1C).

To identify the contribution of each factor to each network motif, we counted the number of times a factor was present in each of

the 13 three-node network motifs within the H7-hESC cell type, in any motif position (Figure S3F). We scaled each column vector to

length 100, and then divided each element of a row vector by the maximum value in that row to visualize contributions in heatmap

form using the matrix2png program without row normalization (Pavlidis and Noble, 2003).
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Figure S1. Overlap of Cell-Type-Specific Transcriptional Regulatory Networks, Related to Figure 3

(A) Histogram showing the number of cell types that each transcriptional regulatory interaction (edge) was observed in.

(B) The overlap of transcriptional regulatory interactions (edges) identified in ESCs (H7-hESC), skeletal muscle myoblasts (HSMM), and renal cortical epithelium

(HRCEpiC).

(C) The number of common edges and common DNaseI footprints between the ESCs (H7-hESC), HSMM, HRCEpiC networks.

(D) Cytoscape derived network showing all edges that are unique to the HSMM network.

(E) Cytoscape-derived network showing all edges that are unique to the HRCEpiC network.

(F) Cytoscape-derived network showing all edges that are unique to the ESC (H7-hESC) network.
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Figure S2. Identification of Common Highly Connected TFs, Related to Figure 4

Shown is the number of cell-type-specific networks in which a given factor is among the top 10% of highest degree nodes.
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Figure S3. Transcriptional Regulatory Networks Have a Conserved Network Motif Architecture, Related to Figure 6

(A) Shown is the average relative enrichment or depletion of the 13 possible three-node architectural network motifs within the regulatory networks of each cell

type (red line), comparedwith the relative enrichment of the samemotifs in four previously publishedmulticellular biological networks (Milo et al., 2004);C. elegans

neuronal connectivity network (blue line), the mammalian signal transduction network (green line), and the sea-urchin (purple line) and Drosophila (black line)

developmental transcriptional networks.

(B) Shown is the relative enrichment or depletion of the 13 possible three-node architectural network motifs within the regulatory networks of each cell type

constructed using all 538 TRANSFAC motifs, including redundant motifs (red lines).

(C) The overlap of edges identified in three progenitor cell types—ESCs (H7-hESC), hematopoietic stem cells (CD34+), and HSMM. Shown to the right is the

percentage of all edges common to these three cell types, as well as the percentage of all FFLs common to these three cell types.

(D) The overlap of edges identified in three pulmonary cell types—NHLFs, HMVEC_LLy cells, and SAECs. Shown to the right is the percentage of all edges

common to these three cell types, as well as the percentage of all FFLs common to these three cell types.

(E) Overlap of FFLs from networks of each cell type, following the ordering shown in Figure 4A. The color of each box corresponded to the Jaccard index between

FFLs from the two cell-type-specific networks contributing to that box.

(F) Heatmap showing the contribution of all 470 TFs with interactions in ESCs (H7-hESC) to 13 possible three-node architectural network motifs in the ESC-type-

specific network. The factors are sorted by their contribution to FFLs.
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