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The human microbiome is a 
key contributor to health and 

development. Yet little is known about 
the ecological forces that are at play in 
defining the composition of such host-
associated communities. Metagenomics-
based studies have uncovered clear 
patterns of community structure but 
are often incapable of distinguishing 
alternative structuring paradigms. In a 
recent study, we integrated metagenomic 
analysis with a systems biology approach, 
using a reverse ecology framework to 
model numerous human microbiota 
species and to infer metabolic interactions 
between species. Comparing predicted 
interactions with species composition 
data revealed that the assembly of the 
human microbiome is dominated at the 
community level by habitat filtering. 
Furthermore, we demonstrated that this 
habitat filtering cannot be accounted 
for by known host phenotypes or by 
the metabolic versatility of the various 
species. Here we provide a summary of 
our findings and offer a brief perspective 
on related studies and on future 
approaches utilizing this metagenomic 
systems biology framework.

Introduction

The human microbiome plays a critical 
role in maintaining the health of its host, 
contributing to energy harvest,1 innate 
immunity,2 and infection resistance,3-5 
and microbiome dysbiosis has been 

implicated in a number of diseases6-9. 
Recent years have seen a surge of interest 
in understanding how changes in the 
microbiome influence, or are influenced 
by, changes in host health, lifestyle, 
and physiology. In order to address 
these questions, numerous studies have 
been performed to characterize host-
associated microbial communities 
and to identify factors that impact the 
composition of these communities. 
Specifically, comparative metagenomics 
approaches have been commonly used 
to assess variation across individuals, 
across anatomical sites, and between 
health and disease.6,10-12 Comparing 
communities across different host states 
has shown, for example, that obese and 
lean microbiomes differ in composition 
and capacity for nutrient harvest7,13 and 
that the microbiota of healthy individuals 
can be distinguished from the microbiota 
of individuals with colitis or Crohn 
disease.6 Similarly, experiments using 
germ-free mouse models have shown that 
diet is a strong determinant of community 
composition14 and that the microbiome 
undergoes marked shifts during diet-
induced obesity.15

Comparative metagenomic studies, 
however, cannot usually reveal the 
underlying ecological forces that drive 
observed shifts in community structure, 
and several other approaches, often 
integrating additional information, have 
been proposed to confirm such assembly 
forces. One such study, for example, used 
operational taxonomic units (OTUs) not 
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only to identify member species but also to 
infer evolutionary distances among various 
community members.16 A null-model 
analysis then revealed that abundant 
OTUs in the vertebrate gut clustered 
with rare OTUs in sequence space, a 

characteristic of non-neutrally assembled 
communities. Investigating microbial 
co-occurrence patterns can further 
provide clues as to the non-neutral forces 
that structure a community. For example, 
an examination of oral communities from 

10 individuals revealed that segregation 
is more apparent at the level of genera 
than species, indicating that structuring 
forces may act differently across different 
taxonomic levels.11 Within the gut, 
co-occurring microbes further group 
into phylogenetically related clusters6 and 
may partition individuals into specific 
enterotypes.17 More generally, across 
the human microbiome, co-occurrence 
patterns are largely constrained by 
anatomical site,12 suggesting that species 
are adapted to specific niches.18 On 
a more global scale, literature-driven 
co-occurrence analysis has demonstrated 
the influence of competitive metabolic 
interactions on lifestyle and on ecological 
strategy.19 Yet, while these studies provide 
evidence of the existence of ecological 
forces that structure the community and 
that give rise to non-random composition 
patterns, they do not point to specific 
ecological assembly dynamics and cannot 
clearly distinguish between alternative 
assembly rules.20

As a specific example, consider 
the checkerboard incidence pattern 
often observed in naturally occurring 
communities, including those that inhabit 
the human body.11 A checkerboard pattern 
refers to the tendency of certain taxa to 
exclude one-another from shared habitats 
and is seen as an indicator of non-neutral 
assembly.21 Such a pattern, however, can 
be the outcome of two distinct niche 
processes (see, for example, Fig. 1A). In the 
species assortment model, first proposed 
by Diamond,20 competition leads to 
forbidden pairs of taxa which cannot 
co-exist within one site. Alternatively, 
a habitat filtering model supposes that 
habitats with differing environmental 
features support non-overlapping sets of 
taxa.22 Without additional information 
about species interaction, taxon incidence 
or co-occurrence data alone may often 
be insufficient to determine which of 
these two forces underlies the observed 
community structure (Fig. 1B).

To address this challenge, we 
recently presented a study23 aiming to 
quantify community-level assembly 
rules and to determine the relative 
roles of habitat filtering22,24 vs. species 
assortment20 in forming patterns of 
microbial co-occurrence across the 

Figure  1. Habitat filtering and species assortment can produce similar community structures 
but can be distinguished by using genome-scale models to predict species interaction. (A) 
When habitat filtering dominates assembly, species tend to occur in their preferred habitats 
(indicated by color), even when competitors co-occur. In contrast, when community assembly 
is governed by species assortment, competitors exclude one another from the same habitat. (B) 
Without information about species interaction, habitat filtering and species assortment induce 
an equivalent community structure (as represented by either the species incidence matrix and 
checkerboard score or by the species co-occurrence network), making it challenging to distinguish 
between these two structuring forces. (C) Genome-scale metabolic models can be used to 
predict the nutritional profile of each species (indicated again by color) and, consequently, the 
competition between species. Combining these predicted interactions with information about 
species co-occurrence reveals the dominant assembly force; co-occurrence of competitors 
indicates habitat filtering whereas exclusion of competitors indicates species assortment.
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human microbiome. In this study we 
supplemented comparative metagenomics 
and null-model analysis such as those 
described above with a systems-biology 
approach and with metabolic modeling, 
treating microbiome species not only 
as amorphous members of a complex 
community but rather as constituents 
which interact in a definite manner. 
Specifically, we utilized whole genome 
sequence information to model the 
metabolic networks of hundreds of species 
inhabiting the human body (with a focus 
on the intestine) and used these models to 
determine the nutritional profile of each 
species. We then analyzed these nutritional 
profiles to infer the level of competition 
and complementarity between species, 
providing a proxy for metabolic 
interactions. Combining these predicted 
interactions with species abundance data 
obtained through shotgun metagenomic 
community profiling allowed us to 
distinguish communities structured via 
alternative assembly processes (Fig.  1C). 
Here we review our results, discuss their 
relation to other studies, and provide 
perspective on future work.

Results and Discussion

Our study utilized data from the 
recently published gut microbiome gene 
catalog, generated by the international 
MetaHIT consortium.6 This data set 
represents a deep profile of the intestinal 
microbiome and allowed us to examine a 
number of host states that may be relevant 
to community assembly. In all, fecal 
samples from 124 adult individuals from 
Denmark and Spain were profiled using 
Illumina-based shotgun metagenomic 
sequencing. Individuals were either lean or 
obese and were either healthy or diagnosed 
with inflammatory bowel disease (IBD). 
For a subset of these individuals, an 
enterotype classification17 (clustering of 
community composition into a limited 
number of steady-states) was also available. 
Shotgun reads were aligned to a large 
set of reference genomes to estimate the 
relative abundance of each genome and to 
determine the species composition in each 
sample. We then used these estimated 
abundances to calculate pairwise species 

co-occurrence scores, identifying pairs of 
species that tend to co-occur vs. those that 
tend to exclude one another.

A crucial feature of our analysis 
was the use of whole genome sequence 
information to model the metabolic 
network of each microbial species and to 
ultimately predict metabolic interactions 
between species. As described above, this 
approach was intended to supplement 
standard null-model analyses that are 
commonly performed to determine the 
existence of non-neutral structure in a 
meta-community11,16 and to allow us to 
differentiate between alternative forces 
that can give rise to such structure.20,22,24,25 
Given the metabolic networks of the 
various species, we employed a previously 
introduced reverse ecology algorithm26-28 to 
determine each species’ nutritional profile: 
the set of compounds in its metabolic 
network that it cannot synthesize from 
other precursors and that allow synthesis 
of all other compounds. This set was 
previously shown to accurately represent 
the set of nutrients each species extracts 
from its environment and to successfully 
serve as a proxy for the biochemical niche 
of each species.26 Calculating the pairwise 
overlap between these nutritional profiles, 
we then defined a metabolic competition 
index, representing an upper limit for the 
level of competition one species may be 
expected to experience in the presence 
of another. We similarly used these 
nutritional profiles to define a metabolic 
complementarity index, representing the 
potential for cohabiting species to reduce 
niche competition by synthesizing, rather 
than acquiring, required nutrients.

Notably, a few features of these 
interaction indices make them especially 
favorable for modeling and studying 
pairwise metabolic interactions. Most 
importantly, in contrast to simple set-
similarity coefficients (e.g., Jaccard 
index), the defined competition and 
complementarity indices were not 
necessarily symmetric, accurately 
capturing the potentially unbalanced 
impact of ecological interactions; if, 
for example, one organism’s nutritional 
profile is a subset of another organism’s 
significantly larger profile, competition 
would impact more heavily the first 
organism (since it cannot utilize 

alternative nutrients). Moreover, the 
definition of these indices also accounts 
for the nutritional flexibility of generalist 
species and controlling for nutritional 
profile size in our downstream analysis did 
not change any of the observed patterns.

Calculating the interaction indices 
and comparing them with the species 
co-occurrence scores discussed above, we 
found that species tend to co-occur most 
frequently with species with which they 
most strongly compete. Put differently, 
our finding implies that the various 
species inhabiting each individual all 
utilize relatively similar nutritional 
niches, whereas species with markedly 
different nutritional requirements tend to 
be found in different hosts. This pattern 
suggests that species in the gut do not 
competitively exclude one another but are 
rather filtered by the environment, and 
while species interaction may still play 
some role in structuring the composition 
of species in the gut, our finding indicates 
that habitat filtering is the dominant 
factor governing community assembly in 
the gut microbiome.

As mentioned above, the MetaHIT data 
set was chosen for its coverage of diverse 
host phenotypes. Central to the habitat 
filtering model is the idea that habitats 
are distributed along some environmental 
axes (e.g., pH, sucrose availability, etc.). 
Environmental parameters then form a 
stability landscape, wherein each species 
finds an optimal point.29 Given the ability 
to distinguish the intestinal community of 
individuals with a disease from controls6 
or to divide samples into enterotypes17 
solely based on community composition, 
it is reasonable to assume that partitioning 
samples according to these attributes 
would potentially highlight underlying 
environmental differences that drive 
habitat filtering. It is possible, for example, 
that the gut environment of obese 
individuals or those with IBD is abundant 
in a given nutrient, strongly selecting for 
species that rely on this nutrient for growth. 
When considering only these samples, 
environmental variation will be restricted, 
and, if this variation indeed contributes 
to habitat filtering, one would expect a 
commensurate reduction in the observed 
habitat filtering pattern. Surprisingly, 
however, when partitioning along body 
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mass index (BMI), IBD, nationality, or 
enterotype, each a promising candidate 
for driving habitat filtering and for serving 
as an environmental filtering axis, no 
reduction in signal was found and in each 
subset of samples species still tended to 
co-occur with their strongest competitors.

As proposed in our study, this 
suggests that as-yet-to-be-determined 
environmental features (e.g., host 
genotype, pH, etc.) define crucial 
habitat filtering axes and contribute most 
strongly to community assembly. One 
obvious environmental factor that could 
play a major role in filtering species in 
the gut is diet. Diet, for example, was 
shown to be a successful predictor of 
community composition in mice.14 More 
recently, additional studies have further 
strengthened this proposition. David et 
al. have shown that a significant dietary 
shift in humans leads to reproducible 
changes in the composition of the 
intestinal community.30 Among the most 
affected taxa, a clear association can be 
made as to the influence of particular 
macromolecules. Furthermore, a meta-
transcriptomic analysis demonstrated 
that microbial metabolic activity 
similarly shifted with diet, suggesting 
that diet is a major, and perhaps the 
predominant, environmental factor 
that acts on the intestinal microbiota. 
Ridaura et al. additionally demonstrated 
that the microbiota transplant-induced 
development and rescue of an obesity-like 
phenotype in mice was diet dependent.31 
Future studies and additional meta-
omic analyses (e.g., including meta-
metabolomics data) may be able to provide 
more details on such environmental 
factors.

Importantly, our framework also 
allowed us to control for phylogeny. 
Phylogenetic clustering is often considered 
the best evidence of habitat filtering. 
Directly controlling for phylogenetic 
effects using several methods, we observed 
no loss in signal, in spite of a previously 
reported tendency for related species 
toward similar nutritional profiles.26

Having examined potential axes of 
habitat filtering and the role of phylogeny, 
we turned to assess the impact of scale. 
To this end, we used data obtained by the 
NIH Human Microbiome Project (HMP) 

survey.12,32 In contrast to the MetaHIT 
data set, all HMP samples were obtained 
from healthy individuals, but a total of 
18 body sites were included. These HMP 
samples first allowed us to validate our 
main results with an independent data 
set. It further allowed us to demonstrate 
the applicability of our hypothesis to 
the microbiome at large and to explore 
observed assembly rules at varying scales. 
Specifically, our finding that comparing 
across all body sites in aggregate reveals a 
strong signature of habitat filtering is in 
accord with a recent study reporting that 
increasing meta-community scale makes 
local communities appear clustered.33 We 
further demonstrated that even when body 
sites are considered separately, each local site 
appears habitat-filtered in almost all cases 
(and see also our discussion23). Notably, 
sampling method also plays an important 
role in determining the biogeographic 
scale of the study. Our analysis (as 
well as many other analyses of the gut 
microbiome) assumes that fecal samples 
can provide an accurate representation of 
the underlying community composition 
in the gut. Nonetheless, much evidence 
shows that the microbial community 
is not evenly distributed along the 
gastrointestinal tract10,34 or between 
the lumen and epithelial surface,10 and 
indeed, spatial heterogeneity leads to 
significant differences in niches and their 
occupancy.5 In this sense fecal sample 
profiling provides, at best, an estimate of 
the average species composition along the 
gut, ignoring any spatial heterogeneity and 
local scale variability. It is therefore not yet 
clear how the availability of fine-resolution 
data, describing the species composition of 
“micro-habitats” in the gut, may alter our 
perspective of community assembly rules.

While our analysis considered only 
nutrient utilization and production, many 
other factors may clearly contribute to 
community assembly. Our modeling 
framework ignores, for example, cell-cell 
signaling and bacteriocin production, 
and it still remains to be seen whether 
factors such as these, rather than nutrient 
utilization, dominate community 
assembly. A recent study performed in 
germ-free mice identified, for example, 
a genetic locus mediating invasion 
resistance.35 Interestingly, the locus appears 

to be responsible for oligosaccharide 
import, and the ability to resist invasion 
by a competing strain was accordingly 
determined by the ability to exploit a given 
set of resources. Similarly, the expansion of 
the pathogens S. enterica and C. difficile 
following antibiotic administration was 
shown to be dependent on their reliance 
on available sialic acid,36 supporting the 
hypothesis that community abundance is 
controlled by limiting substrates.37

Such studies demonstrate the 
importance of nutrient utilization and 
niche effects in assembling the intestinal 
community. Yet, under the assumption 
of limiting substrates, the tendency of 
competing species to co-occur seems 
somewhat paradoxical. Recent work 
has shown that not only do competitive 
interactions dominate pairwise interactions 
of naturally co-occurring microbes,38 
higher order positive effects, which could 
lessen competition’s deleterious effects,39 
are rare at best. Nonetheless, many 
other factors may play a role, including 
spatial heterogeneity,40,41 environmental 
stochasticity,42 and the selective influence 
of the host.1,43,44 Furthermore, it should 
be noted that the levels of metabolic 
competition observed using our metrics 
do not, in general, approach complete 
niche overlap.

Interestingly, one of our interaction 
indices, namely the metabolic competition 
index, shares conceptual similarity 
with another test for habitat filtering, 
termed convex hull volume.24 In this 
test, the species in each community are 
represented as points in an n-dimensional 
trait-space. Communities structured by 
habitat filtering then occupy a relatively 
narrow region of this trait-space. The 
various compounds identified by our 
reverse ecology framework can similarly 
be conceived as representing the various 
axes of such a trait-space, and our finding 
that co-occurring species have more 
similar profiles is consequently analogous 
to finding a community with a small 
convex hull volume. A critical difference, 
however, is that the various compounds in 
each nutritional profile are linked through 
the organism’s metabolic network and are 
thus not independent of one another and 
do not necessarily represent orthogonal 
axes. Nonetheless, this method suggests 
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a potential approach by which additional 
ecological trait information can be 
combined with our modeling framework.

As our appreciation for the complexity 
of the human microbiome grows, 
researchers are moving beyond descriptive 
studies of this system and are focusing 
on understanding mechanisms of 
community assembly. Germ-free host 
systems, in particular, provide an exciting 
opportunity to study the interplay of 
diet, microbe interactions, genetics, and 
environmental factors in shaping the 
microbiome’s structure and function.14,35,45 
Supplementing such experimental studies 
with in silico modeling of microbial 
interactions can offer valuable insights 
into the mechanisms, dynamics, and 
robustness of community assembly. 
The framework presented in our study, 
combining metagenomic analysis with 
genome-scale metabolic modeling, 
represents an important step in this 
direction.

Clearly, such a framework relies heavily 
on the availability of fully sequenced 
genomes to construct genome-scale 
models. Thanks to the efforts of consortia 
such as the HMP and the MetaHIT, 
as well as numerous independent 
groups, genome sequence information 
is now available for many of the species 
most abundant within the human 
microbiome. Efforts to sequence and to 
explore the metabolic potential of poorly 
characterized clades through single-cell 

genomics will further allow us to model 
species from diverse environments.46 Such 
initiatives can be further complemented 
by the development of computational 
tools that integrate available genomic 
and metagenomic data for inferring the 
genomic content of yet-uncharacterized 
species. A recently introduced method, 
for example, integrates variation in 
gene and taxonomic composition 
across multiple samples to deconvolve 
metagenomes into taxa-specific gene 
profiles, providing an assembly-free 
reconstruction of the genomic content 
of microbiome taxa.47 Another recently 
introduced computational platform, 
PICRUSt, couples whole genome sequence 
information with a reference taxonomic 
tree to predict the gene contents of 
OTUs with no representative genomes.48 
Such computational methods—
associating OTUs whose abundances 
in the community were assayed through 
16S surveys with their predicted gene 
content—are especially relevant to our 
framework and can be used to reconstruct 
the metabolic models of various species 
in the community. These methods are 
especially important for studying less well-
characterized ecosystems, where OTU 
information may be available but genomic 
information is scarce.

Ultimately, however, the goal of our 
study, and of other efforts to model various 
aspects of this complex system,13,49,50 is to 
develop a comprehensive, predictive, and 

systems-level model of the microbiome.51,52 
Clearly, this goal is extremely challenging. 
Few biological systems approach the 
complexity of the human microbiome: a 
web of hundreds of interacting species, 
each encoding a unique set of metabolic 
capabilities,and all functioning within a 
complex host environment with potential 
interplay between the microbiome and 
host genetics, physiology, and lifestyle. 
Temporal dynamics, spatial heterogeneity 
across multiple scales, and strain-level 
variation53,54 further challenge current 
efforts to construct such a complete 
modeling framework. Considering this 
complexity and our limited understanding 
of this system, it is perhaps not surprising 
that microbiome research is witnessing 
an exciting synthesis of experimental, 
computational, and analytic approaches. 
Metagenomic systems biology—the 
coupling of metagenomic data analysis 
with computational systems biology and 
modeling techniques—is likely to play a 
central role in this synthesis.
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