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Abstract
The human microbiome is a complex biological system with numerous interacting components across multiple
organizational levels. The assembly, ecology and dynamics of the microbiome and its contribution to the develop-
ment, physiology and nutrition of the host are clearly affected not only by the set of genes or species in the micro-
biome but also by the way these genes are linked across numerous pathways and by the interactions between the
various species. To date, however, most studies of the human microbiome have focused on characterizing the
composition of the microbiome and on comparative analyses, whereas significantly less effort has been directed at
elucidating, characterizing and modeling these interactions and on studying the microbiome as a complex, intercon-
nected and cohesive system. Here, specifically, I highlight the pressing need for the development of predictive
system-level models and for a system-level understanding of the microbiome, and discuss potential computational
frameworks for metagenomic-based modeling of the microbiome at the cellular, ecological and supra-organismal
level. I review some preliminary attempts at constructing such models and examine the challenges and hurdles
that such modeling efforts face. I also discuss possible future applications and research avenues that such metage-
nomic systems biology and predictive system-level models may facilitate.
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INTRODUCTION
Biological systems are inherently complex, whether

they are molecular mechanisms in a living cell, neur-

onal circuits in the brain or populations of organisms

in an ecosystem. This complexity is mostly encapsu-

lated not in the components that constitute the

system but rather in the intricate and often highly

nonuniform way these numerous components are

linked to one another and interact to produce an

emergent phenotype. The human microbiome is

no different and in many ways embodies a canonical

example of a multilevel and hierarchical complex

system.

Research of the microbiome in recent years has

focused mainly on determining its composition and

on examining the variation in composition across a

wide range of states. To this end, next-generation

sequencing and metagenomics have been used to

map both the set of species and the set of genes in

numerous microbiome samples. These studies can be

generally classified into three main categories. First,

much effort has been invested in characterizing

normal compositional variation and in better defin-

ing the scope of the normal microbiome. Tremen-

dous variation has been observed across time [1–3],

across body sites [2–4] and across hosts [5]. Second,

multiple studies have examined the response of

the microbiome to extreme disruption and its resili-

ence to abrupt population changes by surveying

compositional shifts that follow various types of
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perturbations [6]. Third, and most importantly,

extensive efforts have been invested in identifying

significant associations between the composition of

the microbiome and a variety of diseases or host

phenotypes [7–9].

These studies and the characterization of the

microbiome across multiple states are clearly a crucial

first step in studying the human microbiome and its

role in human health, ultimately leading to a better

and more profound understanding of the micro-

biome. To date, however, such studies have empha-

sized mostly the ‘parts list’ of the microbiome and

have often overlooked the web of interactions

between these parts and the complex system-level

organization of the microbiome. Clearly, molecular

and metabolic interactions between multiple genes

within the same microbial cell or across different

cells, population-level interactions between microbes

of a certain species and ecological interactions

between the numerous species comprising the

microbiome, all play a key role in the assembly,

activity and dynamics of the microbiome and in its

impact on the host [10]. Moving beyond the

‘bag-of-genes’ or ‘bag-of-species’ viewpoint of

comparative studies and accounting also for these

interactions is therefore essential for a complete

system-level understanding of the microbiome.

Systems biology research has been instrumental in

the modern postgenomic era [11]. It has revolutio-

nized the study of complex biological systems, focus-

ing on integrative analysis rather than on a

reductionist paradigm and on discovering system-

level emergent properties [12, 13]. Specifically, in

studying microbial species, genome-scale

system-level models have successfully predicted

cellular behavior and have suggested novel design

principles in various bacterial systems [14, 15].

Extrapolating this approach from single-species to

multi-species microbial systems, therefore, represents

a promising opportunity and may provide new

insights into the workings of various microbial com-

munities and specifically into the function and

dynamics of the human microbiome. Surprisingly,

however, systems biology research has not yet been

extensively applied to the study of the human micro-

biome and research combining metagenomic data

with systems biology methods or with system-level

models are lacking. This gap may reflect our limited

knowledge of the human microbiome prior to the

metagenomic revolution. However, at present, with

the massive expansion of genomic and metagenomic

data, the explosion of studies examining various

aspects of the human microbiome and the advent

of computational systems-based methods, the time

is ripe for introducing systems biology inspired

methods into the study of the microbiome and for

developing a system-level predictive understanding

of its function [16, 17].

In this article, I underline the need to apply sys-

tems biology research to study the microbiome and

focus on one promising direction, namely, the con-

struction and analysis of in silico system-level meta-

bolic models. I will first briefly review various

methods for modeling microbial metabolism that

have been extremely fruitful in elucidating the meta-

bolic capacity of microbial species. I will specifically

highlight the ‘reverse-ecology’ concept—an emer-

ging paradigm for inferring species’ habitats and ecol-

ogy from genome-scale metabolic models—which is

particularly fitting for studying the microbiome. I

will then present two approaches for expanding

such modeling frameworks to model microbial com-

munities (Figure 1). First, I will discuss multi-species

models that can be used to predict and study meta-

bolic interactions between the various species in a

microbial community, and then I will present an

alternative approach, modeling the entire commu-

nity as a single supra-organism. I will finally discuss

future directions and potential applications of such

models for biomedical research.

IN SILICOMODELSOFMICROBIAL
METABOLISM
The construction, study and analysis of in silico
models of microbial metabolism have proved ex-

tremely fruitful over the past few years. As genomic

data accumulate, modeling efforts go beyond specific

metabolic pathways and focus on whole-cell metab-

olism and genome-scale analysis [18, 19]. Models can

be reconstructed and analyzed using a wide range of

modeling frameworks, including topological models,

kinetic models, stochastic models and constraint-

based methods [15]. These frameworks vary mark-

edly in the amount and type of data required to

reconstruct the model, the set of assumptions on

which the model is based, the analysis method and

the capacity to make accurate predictions. For add-

itional details on modeling microbial metabolism,

see Refs [18–21]. In this review, I will focus primar-

ily on two modeling frameworks, ‘topology-based’

models and ‘constraint-based’ models. These two

770 Borenstein
 at U

niversity of W
ashington on D

ecem
ber 21, 2012

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

http://bib.oxfordjournals.org/


frameworks are the ones most commonly used to

model microbial metabolism and are most likely to

make a significant contribution to the study of the

human microbiome. Specifically, both these frame-

works proved extremely powerful in offering novel

insights into microbial behavior and in successfully

predicting various aspects of microbial function.

Moreover, these frameworks do not require

hard-to-obtain kinetic parameters, which are clearly

not available for recently characterized microbiome

species.

Topology-based models
The underlying premise of any topology-based ana-

lysis of complex biological networks is that the struc-

ture and topology of a system are major determinants

of the system’s capacity and function [22]. Analyzing

the topology of a biological system may therefore

provide valuable insights into its behavior and help

to explain observed phenotypes. In the context of

metabolism, a large body of work has focused on

analyzing the topology of simple network-based

models that describe the metabolic process in a

given species. The construction of such models

often relies on an automated homology-based com-

putational inference of the set of enzymatic genes in

a given genome and the derived set of biochemical

reactions that an organism can potentially catalyze.

This process relies heavily on cross-species metabolic

databases such as KEGG [23] or MetaCyc [24]. The

set of reactions can then be represented, for example,

as a simple directed graph where nodes denote

metabolites and edges connect substrates to products

(Figure 1A). Alternative representations, including an

enzyme-based graph, a bipartite graph or a hyper-

graph, are similarly useful and are commonly used

[25]. The topology of the reconstructed network is

then examined, and topological features that correl-

ate with metabolic phenotypes are identified.

These models are clearly extreme simplifications

of an organism’s metabolism, taking into account

only the presence or absence of various metabolic

reactions and ignoring many properties of the meta-

bolic process such as reaction stoichiometry or rate.

Yet, probing the topology of such models has proved

successful in gaining insights into the metabolic cap-

acity of an organism and into a plethora of other

phenotypic attributes [26–30]. The most significant

advantage of these models, however, is the relative

ease with which they can be reconstructed and the

scale on which they can be obtained [31], facilitating

large-scale and cross-species analysis.

Figure 1: In silico models of the human microbiome. (A) Single-species metabolic models represent the set of
chemical reactions that take place within the boundaries of a single cell. Here, a simple connectivity-based model
is illustrated where nodes represent metabolites and edges connect substrates to products. (B) Multiple
single-species models can be integrated into an ecosystem community model. Using various computational frame-
works (such as reverse ecology), the type andmagnitude of the interactions within the community can be predicted,
inferring, for example, whether pairs of species directly compete for nutrients and hence hinder the growth of
one another (illustrated as circle-headed arrows) or cooperate via cross-feeding (illustrated as pointed arrows).
(C) Alternatively, supra-organism models can be reconstructed, ignoring boundaries between species altogether
and modeling community-level metabolism. In many cases, such models are a necessity since genomic information
is not available for all the species in the community. Supra-organism models can then be reconstructed directly
from shotgun metagenomic data.
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Constraint-based models
Constraint-based models aim to define the total set

of constraints that govern metabolic fluxes in a given

species [15]. These include mass balance (stoichio-

metric constraints), reaction reversibility (thermo-

dynamic constraints) or limitations on the capacity

of each reaction. The reconstruction of genome-

scale constraint-based models usually involves four

major steps [32]: (i) metabolic gene annotation (as

in the construction of topology-based models); (ii)

manual curation according to the literature and con-

version into a mathematical model; (iii) validation of

the model’s predictions by comparison to phenotypic

data; and (iv) improvement of the model by cycling

through computational and experimental work.

Such manually curated, high-quality models accord-

ingly entail an extremely involved process and follow

a meticulous reconstruction protocol [33], and are

therefore bound in scale. An automated framework

for the generation and optimization of such models

has recently been put forward [34], suggesting a pos-

sible large-scale alternative.

Given the set of constraints defined by the model,

several methods have been developed to explore the

space of allowable solutions and to predict specific

metabolic solutions that the cell may exhibit. For

example, ‘pathway analysis’ methods examine the

range and variability of flux distribution by consider-

ing all possible flux pathways in a given network

[35]. Predicting a single solution often relies on the

assumption that metabolic regulation evolved to pro-

duce metabolic fluxes that maximize the organism’s

growth [21]. Specifically, flux balance analysis

(FBA) predicts fluxes across the model such that a

‘biomass’ objective function is optimized [36].

Such constraint-based models and pertinent analysis

methods have repeatedly generated accurate predic-

tions concerning the growth and activity of an

organism under various environmental and genetic

conditions [21].

Reverse ecology
The studies described above generally use metabolic

models to infer metabolic function and dynamics. As

stated above, much of systems biology relies on the

assumption that the organization of systems captures

their function. However, as systems adapt to their

environments, their structure clearly reflects not

only their capacity but also the environment in

which they evolved. Recent studies, for example,

have revealed a marked association between the

modularity of metabolic networks across a large col-

lection of microbial species and the level of variabil-

ity in their environments [28, 37]. Reverse

ecology—an emerging research paradigm—aims to

identify such universal structural signatures that can

then be used to obtain insights into the ecology of

poorly characterized species [38–40]. Specifically,

systems-based reverse ecology attempts to develop

computational tools for analyzing genome-scale

models, characterizing the natural habitat of micro-

bial species on a large scale and predicting the inter-

action of these species with their environments and

with other species. For a full review of this reverse

ecology research paradigm, see ref. [40].

Specifically, following this reverse ecology

approach, a computational framework for analyzing

genome-scale metabolic models and for inferring the

set of compounds that organisms extract from their

surroundings, has been introduced [38]. This com-

putationally derived set, termed the ‘seed set’ of the

network, was shown to accurately describe the

effective biochemical environments of hundreds of

microbial species, providing a proxy for their natural

habitats. This framework has now been utilized to

explore and characterize multiple aspects of micro-

bial ecology, including host–parasite interactions

(see also below) [41], universal strategies governing

microbial metabolism [42], environmental robustness

[30] and metabolic exchanges between co-resident

endosymbionts [43]. A web-based tool for calculat-

ing the seed set of a network has recently been

presented [44].

Reverse ecology seems a research avenue espe-

cially suited to studying the microbiome, allowing

the translation of high-throughput genomic and

metagenomic data into ecological data [17, 40].

The human microbiome, with the massive amounts

of data that are now being generated to characterize

it [4, 45] on the one hand and our limited under-

standing of its ecology on the other hand, represents

a unique opportunity for reverse ecology research.

MULTI-SPECIES ECOSYSTEM
MODELS
As in any ecosystem, the various species inhabiting

the human microbiome form a complex set of inter-

actions [46]. A telling sign of these mutual depen-

dencies is the difficulty (and often failure) in

culturing the vast majority of these microbial species

in isolation [47, 48]. Such interactions play a key role
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in community assembly, dynamics and response to

perturbation. An extensive body of work, for

example, relates the organization of ecological inter-

action networks to ecosystem robustness [49, 50].

While such studies mostly focus on communities of

macro-organisms, a similar approach can be applied

to microbial communities.

Understanding inter-species interactions
To better understand the nature and magnitude of

species interactions, considerable effort has been in-

vested in experimentally studying a variety of simple

co-culture systems [10, 51]. Growth assays, for

example, can provide a detailed account of the way

one species affects the growth rate of another [52].

Yet, considering the enormous diversity of the

human microbiota and the difficulties involved in

isolating and culturing many gut dwelling species,

this experimental approach is clearly limited and

does not support a large scale, systematic framework

for studying species interactions in the microbiome.

Alternatively, to obtain a phenomenological under-

standing of the outcome of such interactions, numer-

ous studies have analyzed the co-occurrence of

species in the human microbiome and in other

microbiomes of interest [53–56]. These studies regu-

larly find prominent co-occurrence patterns, suggest-

ing a nonrandom assembly of the microbiome [57]

and generating hypotheses concerning the driving

forces underlying these patterns. Such co-occurrence

patterns, however, do not offer a mechanistic under-

standing of these driving forces or direct evidence for

specific species interactions.

Integrating multiple single-species
models into an ecosystemmodel
Genome-scale in silico models provide an alternative

approach for studying species interactions. Since such

models accurately predict the behavior of various

microorganisms and their interactions with the

environment, they seem ideal for modeling and

studying the interactions between the various species

in a community of microbial organisms. Integrating

multiple single-species models that represent the

community members and developing computational

methods for inferring interspecific metabolic depen-

dencies will allow us to reconstruct predicted micro-

bial ‘food webs’ (Figure 1B), similar to the ones

commonly used to describe macro-organisms’ eco-

systems [50, 58]. Surprisingly, however, to date very

few models of multi-species microbial systems have

been introduced [21], presenting mostly simple in
silico models of microbe–microbe or microbe–host

interactions.

Specifically, applying topology-based analysis,

Christian etal. [59] examined the level of cooperation

between microbial organisms, using the network ex-

pansion algorithm [60] to compare the biosynthetic

capabilities of a two-species unified model with the

biosynthetic capabilities of each species in isolation.

Extending the single-species reverse-ecology frame-

work described above, Borenstein and Feldman [41]

introduced a pair-wise, topology-based measure of

biosynthetic support, assessing the extent to which

the nutritional needs of a putative endosymbiont can

be provided by a host and facilitating the prediction

of such interactions on a large scale. Freilich etal. [61]

further extended this framework, introducing a

topology-based measure of competition and exam-

ining its correlation with the co-occurrence of mi-

crobial species in scientific literature.

Additional attempts have been made to apply

constraint-based modeling to various two-species

systems. Stolyar et al. [62] introduced one of the

first examples of such a two-species stoichiometric

metabolic model, using fully sequenced genomes of

Desulfovibrio vulgaris and Methanococcus maripaludis, to

analyze the mutualistic interactions between

sulfate-reducing bacteria and methanogens. Bordbar

et al. [63] constructed and examined a host–pathogen

model, integrating a Mycobacterium tuberculosis model

with that of the human alveolar macrophage, and

simulated the metabolic changes during infection.

Zhuang et al. [64] modeled the competition between

Rhodoferax and Geobacter species under diverse

conditions. Wintermute and Silver [65] used a stoi-

chiometric model of interacting strains and examined

>1000 pairs of auxotrophic Escherichia coli mutant

strains, focusing on the prevalence of synthetic mu-

tualism. Finally, Klitgord and Segre [66] extended

the FBA framework and considered pair-wise com-

binations of seven microbial species to examine how

the environment in which two species are placed

affects their metabolic interaction.

These constraint-based modeling studies have

applied a variety of approaches to combine single-

species stoichiometric models into an ecosystem

model and to account for the transfer of metabolites

between the two species and between the species

and the environment. Yet, a standard framework

for constructing and analyzing stoichiometric ecosys-

tem models is still lacking and several conceptual
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challenges should be addressed before such a

modeling framework can be introduced. For

example, it is not clear whether some of the assump-

tions often associated with constraint-based model-

ing approaches (including the optimality of the

biomass objective function) still hold for community

metabolism (see, for example, the detailed discussion

in ref. [67]).

An additional property that repeatedly appears as a

key element in constructing such multi-species

models is compartmentalization—the partitioning

of reactions and metabolites between different com-

partments in the model that may represent different

organelles or different species. Klitgord and Segre

[68], for example, investigated how compartmental-

ization affects genome-scale flux balance models,

comparing a compartmentalized model of yeast

organelles to a de-compartmentalized version. Taffs

et al. [69] examined three different compartmental-

ization schemes to study mass and energy flows in

microbial communities. The first scheme utilized a

compartmentalized model wherein each species

occupied a distinct compartment as in some of the

studies described above [62]. The second scheme,

referred to as the pooled reactions model, is similar

in spirit to the supra-organismal approach discussed

later in this article. Finally, a third scheme, termed a

nested consortium analysis, employed two rounds of

processing, the first operating on individual models

and the second on manually selected ecologically

interesting pathways. Taffs et al. compared these

schemes using models based on three distinct micro-

bial guilds, identifying specific advantages and disad-

vantages of each scheme and highlighting criteria for

selecting a modeling approach appropriate for a

given microbial system.

More generally, additional research is still required

in order to make topology- and constraint-based

models applicable to the human microbiome. The

above studies were mostly done on a very small scale,

considering simple two-species models, and focusing

on pair-wise metabolic interactions. With hundreds

of species comprising the gut microbiota, it is neces-

sary to scale such models up. Many more species

should be modeled and analyzed to allow sufficient

coverage of the species comprising the microbiome

and to provide a solid infrastructure for modeling it.

Combining such multi-species genome-based models

with data on the co-occurrence of species in various

samples can reveal forces driving community assem-

bly. Furthermore, since the type and extent of the

interaction between two species may strongly

depend on the presence of other species in the en-

vironment or on additional contextual factors, mod-

eling frameworks should go beyond two-species

interactions. Finally, the majority of these studies

take a static view of metabolism, assuming an overall

metabolic steady state or addressing questions con-

cerning metabolic potential rather than specific

dynamic activation of various metabolic pathways.

These studies further assume a static community

composition and fixed relative abundances of the

interacting species. The introduction of dynamics,

both molecular and ecological, is essential for

making these modeling frameworks accurate and

useful for addressing questions concerning observed

temporal patterns in the microbiome, its assembly

and its dynamic response to perturbations.

Preliminary studies, incorporating molecular and

ecological dynamics, have only recently been intro-

duced [64, 70] and much work is still ahead before a

full comprehensive framework is available.

SUPRA-ORGANISMMODELS
The metabolism of the microbiome is a complex

composite of the metabolic activity of numerous mi-

crobial cells from many different species. Each species

(and in fact, each strain) in the microbiome encodes

a unique set of metabolic functions with unique

metabolic capacities. Accordingly, microbial cells of

different species represent, in reality, compartmenta-

lized metabolic units, with specific limitations on

the transfer of metabolites across cell membranes

[68, 69]. The models described above attempt, to

varying degrees, to capture this compartmentaliza-

tion as well as the autonomous nature of each

species.

One can, however, apply an alternative and fun-

damentally different modeling approach and model

the entire microbiome as a single supra-organism

[71, 72]. This abstraction is in fact common practice

in comparative metagenomic analyses where the

entire set of genes found via shotgun metagenomics

is studied as a proxy for the microbiome’s capacity

and metabolic strategy [73]. Such a gene-centric

approach completely ignores the gene’s species of

origin, and is regularly used, for example, to compare

the set of genes found in microbiome samples asso-

ciated with different host states. In the context of the

human gut microbiome, this abstraction is further

justified by the relative consistency of the functions
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encoded in the microbiome, compared to a much

higher variation at the species level [7], suggesting

microbiome-level niche adaptation.

Following this supra-organismal approach, in silico
models of the microbiome can be reconstructed dir-

ectly from shotgun metagenomic data, representing

community-level metabolism and totally ignoring

cell boundaries or the shuttling of metabolites

across species (Figure 1C). Such metagenomics-based

models were used in a recent study to identify

system-level variation associated with obesity and

inflammatory bowel disease (IBD) [74]. Recon-

structing community-level metabolic networks of

the gut microbiome and projecting shotgun metage-

nomic data onto these networks, this study demon-

strated that most of the enzymatic genes that are

differentially abundant in obese (or IBD) micro-

biomes tend to be located at the periphery of the

metabolic network. This suggests that obesity and

IBD are associated with modifications in the way

the microbiome interacts with the gut environment

rather than variation in core metabolism. Further-

more, using these community-level metabolic net-

works, it was shown that obese microbiome models

are less modular than models representing lean

microbiomes, a characteristic feature of adaption to

a low-variability environment.

The study discussed above highlights the promise

of ‘metagenomic systems biology’ research. More

generally, the motivation for studying such supra-

organism models is 3-fold: First and foremost, since

many gut dwelling species resist isolation and

sequencing, such community-level models are

often a necessity. These models allow us to consider

the entire set of genes found in a microbiome sample

even when the species encoding some of these genes

remain elusive. Second, while multi-species models

are especially fitting for studying the ecology of the

microbiome and the interactions between its various

members, supra-organism models seem uniquely apt

for studying the activity of the microbiome as a

whole and specifically the interaction between the

microbiome and the host. Such models can be used,

for example, to examine possible exchange of me-

tabolites between the community and the gut envir-

onment. Furthermore, integrating such models with

models of human metabolism [75, 76] will allow us

to study the metabolic dependencies between the

gut microbiome and the host in an analogous

manner to the study of the interaction between a

single microbial endosymbiont and its host [41].

Finally, in principle, supra-organism models can be

reconstructed and analyzed using the diverse toolset

developed to study single species metabolic models,

and therefore have tremendous potential for eluci-

dating fundamental questions concerning commu-

nity metabolism.

To date, however, studies of supra-organism

models are still scarce and further development is

needed before a fully comprehensive framework

for metagenomic systems biology is introduced. For

example, it is not clear to what degree the identified

principles and observations from genome-scale single

species models can be extrapolated to metagenomic-

scale supra-organism models. Metagenomic coverage

is another hurdle since rare, but potentially important

functions may be missed. Yet, even with these limi-

tations, as shotgun metagenomic data continue to

accumulate for both the human microbiome and

many other microbiomes of interest, supra-organism

models are an increasingly attractive alternative to

genome-scale models and are bound to lead to excit-

ing discoveries and to a better understanding of the

microbiome.

FUTURE CHALLENGESAND
OPPORTUNITIES
The various studies discussed so far represent the first

exciting steps toward the development of a complete

systems-biology framework for studying the human

microbiome. Much work remains to be done to

make each of the two modeling approaches outlined

above (namely, multi-species models and supra-

organism models) a viable and comprehensive mod-

eling framework. Probably, the most daunting task is

to combine these two modeling schemes into a

single unified framework, bridging the gap between

genome-based single-species models and metage-

nomics-based supra-organism models and introdu-

cing a multiscale model of the microbiome from

the molecular to the ecological level.

Moreover, these conceptual modeling approaches

and the specific computational techniques described

above are clearly not the only routes for modeling

the microbiome. System-level models can be con-

structed with varying levels of abstraction and ana-

lyzed using a wide range of computational methods.

The choice of a specific modeling framework should

be informed by both the type of data available and,

more importantly, the questions one wishes to

address.
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Successful system-level modeling often relies on

abundant data of multiple types. Genomic and meta-

genomic sequencing are therefore essential for the

continued development of better and more accurate

models. Specifically, accurate characterization of

species composition (e.g. using 16S as the chosen

marker) and genomic data on member species are im-

portant for correctly modeling the microbiome eco-

system. Currently, more than a thousand human-

associated genomes have been sequenced (mostly by

the Human Microbiome Project) and hundreds of

additional microbiome species will be sequenced

soon. These species may still reflect a potentially

small set of species compared to the number of species

inhabiting the human body and forthcoming ad-

vances in next-generation sequencing technologies

are predicted to further make thousands of microbial

genomes available. As more human-associated refer-

ence genomes become available, ecosystem models

could be scaled up to eventually account for most of

the relevant species in the microbiome. Similarly,

high-coverage shotgun metagenomic data will pro-

mote improved supra-organism models that accurately

capture the metabolic capacity of the community.

Modeling efforts should in turn inform data collec-

tion, providing testable predictions and pointing to

genes and species of interest. Multi-species ecosystem

models, for example, can identify putative keystone

species and prioritize sequencing pipelines [77].

As next generation sequencing continues to im-

prove and new technologies emerge, the rate at

which genomic and metagenomic data accumulate

will further increase. These technologies clearly pose

huge informatics challenges [78], many of which

arise from the short read length generated by plat-

forms such as Illumina and SOLiD. Specifically, in

the context of metabolic modeling, accurate anno-

tation is key for the successful reconstruction of both

multi-species and supra-organism models. Further

progress in these technologies therefore must go

hand in hand with the development of novel algo-

rithms for the assembly, mapping and annotation of

billions of short reads, facilitating high-resolution

functional characterization of microbiomes and ul-

timately the assembly of full microbial genomes dir-

ectly from shotgun metagenomic data [79]. A partial

list of relevant online resources useful for

system-level metabolic modeling of the microbiome

can be found in Table 1.

Systems-based analysis and in silico modeling of the

microbiome are of course not limited to genomic or

metagenomic data. Other types of data could

potentially advance both the construction and the

validation of such models. Specifically, metatran-

scriptomic and meta-metabolomic data will further

improve modeling frameworks, providing a more

precise characterization of the metabolic activity of

the microbiome and the availability of metabolites in

the environment [16, 93]. Additional data is also

required for the application of specific modeling

frameworks. For example, biomass composition

and uptake rates should be characterized for each

species in order to accurately construct species-

specific constraint-based models. Such data are

clearly challenging to obtain considering the difficul-

ties associated with the efforts to culture many

microbiome-related species. Ultimately, the research

approach laid out in this article aims to provide

system-level ‘predictive’ models of the human

microbiome. Such models lay the foundation for

numerous exciting applications, some of which are

described below.

DESIGNERMICROBIOMESAND
ECOSYSTOMICS
A predictive system-level model of a complex system

is often considered a touchstone of our understand-

ing of that system. Indeed, a model of the human

microbiome, capable of inferring the activity of the

microbiome, its dynamics, and its impact on the host

directly from species and gene composition data,

would definitely indicate a principled understanding

of the microbiome far beyond our current know-

ledge. Here, however, two potential applications

that can be derived from such an ideal model are

highlighted. These applications are obviously still

out of reach and much work still lies ahead before

they become a reality. Yet, they demonstrate the

tremendous potential of systems-based microbiome

research and some of the overarching goals of such

research.

First, an accurate predictive model is an essential

step in developing a framework for designing and

directing bacteriotherapy. Bacteriotherapy, namely

the modulation of one’s microbiota via antibiotics

and probiotics or the transplantation of a complete

microbiota into a recipient, is an exciting clinical

frontier [94]. Microbiome transplantation was re-

cently shown, for example, to successfully resolve

recurrent Clostridium difficile infection, re-establishing

a normal and stable microbiota [95–97]. Related
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technologies, such as personalized microbiota collec-

tions and germ-free mice models, are also being

developed [98, 99]. These efforts, however, are gen-

erally uninformed, utilizing a microbiota from a

healthy donor and transplanting it, as is, into a sick

recipient. Conversely, a predictive microbiome

model can be integrated with an optimization frame-

work to identify precise manipulations that could be

applied to a given microbiota in order to derive a

stable compositional shift and promote some prede-

fined metabolic activity. Alternatively, such an inte-

grated framework could be used for designing novel

microbiomes, devising ‘recipes’ for reconstructing

stable communities with some desired metabolic

activity by mixing and matching available species at

certain relative abundances. ‘Designer’ microbiomes

can offer a therapeutic route for treating numerous

diseases ranging from obesity, diabetes and

inFammatory bowel disease to diarrhea and acute

gastroenteritis or for promoting energy harvest in

populations of undernourished children [100].

Second, taking a more theoretical perspective, a

predictive microbiome model can be used to study

the ‘ecology of the possible’ and to characterize the

contours of the space of possible ecosystem

configurations. Of specific interest is the mapping

from microbiota composition to community-level

metabolism and the regularities in this mapping

[66]. A full characterization of this space is an im-

portant first step toward the development of

‘ecosystomics’—a high-throughput systematic study

of all realizable ecosystems in a given environment.

Ecosystomic research can then provide a neutral

model of ecology which is crucial for determining

the significance of observed compositional patterns.

CONCLUDING REMARKS
Systems biology research has already revolutionized

genomics and could similarly transform metage-

nomic research and particularly research of the

human microbiome [16]. Specifically, in silico
models of the microbiome, aiming to capture its

activity, organization and ecology, will allow us to

go beyond comparative analysis and to study the

microbiome as a complex, multiscale and hierarchical

biological system. The statistician George E. P. Box

once remarked [101]: ‘All models are wrong, but

some are useful.’ Clearly, the models described in

this article and, for that matter, any model of the

microbiome that will be developed in the foreseeable

future, are certain to be inaccurate and to capture

only a simplified subset of this microbial system.

Yet, as Box stated, some of these modeling efforts

are extremely useful and hold great promise. Systems

based research represents a unique opportunity for

addressing several of the most pressing questions con-

cerning the human microbiome: what determines

the assembly of the microbiome and what role do

interspecific interactions play in its composition?

Which factors govern the response of the micro-

biome to various perturbations? How does the

microbiome, as a whole, interact with the human

host and how does it impact human health? These

are fundamentally system-level questions that can be

addressed only by considering system-level attributes

of the microbiome and acknowledging the many

interactions between the various components that

comprise this complex system.

KEYPOINTS

� Thehumanmicrobiome is a complexbiological systemçinterac-
tions between numerous genes and between the various species
comprising the microbiome markedly affect its function, dy-
namics and impact on the host.

Table 1: Useful online resources for systems biology
and modeling of the human microbiome

Resources References

Microbial genomic data and analysis
IMG [80]
DACC [81]
GOLD [31]
Microbes online [82]
RAST [83]

Metagenomic data and analysis
IMG/M [84]
MG-RAST [85]
METAREP [86]

Metabolic databases
KEGG [23]
MetaCyc [24]
Brenda [87]

Metabolic model reconstruction, visualization
and analysis
The Model Seed [34]
Systems Biology Research Group [88]
iPath [89]
PathwayTools [90]
Cytoscape [91]
Cobra [92]

Reverse ecology software
NetSeed [44]
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� Studying the human microbiome calls for a systems-based
research and for system-level modeling, ultimately leading to a
better andmore profound understanding of themicrobiome.

� Computational systems biology of in silico metabolic models
proved extremely useful in studyingmicrobialmetabolism.

� Two fundamentally different approaches can be used to model
microbiome metabolism: genome-based multi-species models
andmetagenomics-based supra-organismmodels.

� Preliminary studies of these modeling approaches demon-
strate tremendous potential but several challenges should be
addressed before a comprehensive modeling framework can be
introduced.
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increasing biosynthetic capabilities by network cooperation.
Genome Inform Int Conf Genome Inform 2007;18:320–329.
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