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SUMMARY

Within each bacterial species, different strains may
vary in the set of genes they encode or in the copy
number of these genes. Yet, taxonomic character-
ization of the human microbiota is often limited to
the species level or to previously sequenced strains,
and accordingly, the prevalence of intra-species
variation, its functional role, and its relation to host
health remain unclear. Here, we present a compre-
hensive large-scale analysis of intra-species copy-
number variation in the gut microbiome, introducing
a rigorous computational pipeline for detecting such
variation directly from shotgun metagenomic data.
We uncover a large set of variable genes in numerous
species and demonstrate that this variation has
significant functional and clinically relevant impli-
cations. We additionally infer intra-species com-
positional profiles, identifying population structure
shifts and the presence of yet uncharacterized vari-
ants. Our results highlight the complex relationship
between microbiome composition and functional
capacity, linking metagenome-level compositional
shifts to strain-level variation.

INTRODUCTION

The human gut microbiome plays an important role in host meta-

bolism, immunity, and drug response and has a tremendous

impact on our health (Iida et al., 2013; Kinross et al., 2011; Vi-

jay-Kumar et al., 2010). Numerous comparative studies aiming

to characterize the contribution of the microbiome to human

health have already demonstrated marked shifts in the relative

abundance of various species, genera, or phyla in various dis-

ease states (Frank et al., 2007; Hoffman et al., 2014; Larsen

et al., 2010; Turnbaugh et al., 2009). Clearly, however, each

microbial species represents many different strains that may

encode considerably different sets of genes and a different

number of copies of each gene (reflecting, for example, gene de-

letions and duplication events). Such intra-species variation en-

dows each strain with potentially distinct functional capacities.

Studies of individual isolates of cultured species have indicated,

for example, that strains often differ in virulence (Gill et al., 2005;
Salama et al., 2000; Solheim et al., 2009), motility (Zunino et al.,

1994), nutrient utilization (Siezen et al., 2010), and drug resis-

tance (Gill et al., 2005). Accordingly, the true functional potential

of a microbiome cannot be inferred from species composition

alone, and species-level comparative analyses may fail to cap-

ture important functional differences across samples. Recent ef-

forts to catalog the relative abundance of known strains in human

microbiome samples (Kraal et al., 2014) may recover some of

these differences but are limited to sequenced reference ge-

nomes and are not able to identify novel, yet-to-be-sequenced

variation. Gene-centric shotgun metagenomic studies, on the

other hand, may identify genes or pathways that are differentially

abundant across samples but cannot necessarily attribute these

shifts to specific species or strains. Specifically, it is often un-

clear how much of the observed variation in gene composition

is due to variation in the abundances of species and how much

is contributed by intra-species variation. Indeed, conflicting re-

sults have been reported, with trends identified among species

profiles that are often poorly translated to gene profiles and

vice versa (Muegge et al., 2011; Turnbaugh et al., 2009). It is

therefore not yet clear how prevalent gene-level intra-species

variation is in the human gut, whether such variation is adaptive

and affects specific functions, and how much of this variation

has already been captured by reference genomes.

Some evidence already suggests that variation among strains

is common in the human gut. Several studies have focused

specifically on nucleotide-level variation, assessing, for example,

the prevalence and stability of single-nucleotide polymorphisms

across numerous metagenomes (Schloissnig et al., 2013) or

the level of sequence diversity across multiple near-complete

genomes from two bacterial species variants obtained by

single-cell sequencing (Fitzsimons et al., 2013). Other studies

have taken steps to associate sequence variationwith gene-level

differences, identifying, for example, areas of variable coverage

and the coordinated loss of genes from specific gene families

within the Streptococcus mitis B6 genome (Human Microbiome

Project Consortium, 2012) or a diverse array of strain-specific

adhesion-like protein genes across cultured strains of Meth-

anobrevibacter smithii (Hansen et al., 2011). Additional studies

have used extensive manual genomic reconstruction to track

strain-resolved shifts over time in Actinomycetaceae in the

relatively low-complexity premature infant gut microbiome

(Brown et al., 2013); to detect differences related to antibiotic

resistance, transport, and biofilm formation among three strains

of Staphylococcus epidermis (Sharon et al., 2013); or to identify
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the variable presence of genes involved in transport, motility,

carbohydrate metabolism, and virulence in two distinct strains

of Citrobacter (Morowitz et al., 2011). These gene-level studies,

however,mostly report small-scale or anecdotal results, focusing

on one or a small number of species and often on specific gene

families. A high-throughput, comprehensive analysis of gene-

level variation across a large array of species in the human gut

is therefore needed to more fully appreciate the extent and func-

tional implications of strain variation in this complex microbiome.

To address this challenge, here we establish a rigorous and

robust pipeline to estimate the copy number of each gene in a

large set of prevalent gut microbial species in a given sample

directly from metagenomic shotgun data and, furthermore, to

detect copy-number variation across samples. We carefully cali-

brate this pipeline to confirm that it can successfully estimate the

copy number of individual genes in individual species on a large

scale. Applying this pipeline to 109metagenomic samples from a

recent study of the gut microbiomes of healthy, obese, and in-

flammatory bowel disease (IBD)-afflicted individuals, we esti-

mate the copy number of more than 4,000 gene groups across

70 species in each of these samples and demonstrate the pres-

ence of widespread copy-number variation within many genes in

many species. We find that specific functions are especially

prone to copy-number variation, including functions relevant to

a community lifestyle and adaptation to the gut environment,

and further detect associations between strain variation and

host phenotype. Finally, we demonstrate that these copy-num-

ber estimates can be used both to model the composition of

known strains within each sample and to offer insight into com-

plex population structures, suggesting the presence of yet un-

characterized species variants.

RESULTS

A Pipeline for Calculating Genomic Copy-Number
Estimates in Metagenomic Samples
We developed a pipeline to confidently detect variation in gene

content and gene copy number in a large set of prevalent human

gut microbes directly from metagenomic data (Figure 1 and

Experimental Procedures). Briefly, this pipeline works as follows.

Shotgun metagenomic short reads were first aligned to a set of

reference genomes representing dominant and prevalent gut

microbiome strains. To account for the potentially multiple ge-

nomes available for each species in this reference database, ge-

nomes were grouped into clusters using a previously introduced

sequence similarity-based method (Schloissnig et al., 2013).

These clusters represent approximate species-level groups,

though in some cases may not reflect classical taxonomic divi-

sions. We used extensive simulations to carefully select align-

ment parameters and confirmed that, with these parameters,

reads mapped to the correct region and correct genome cluster,

whereas reads from genome clusters not represented in our

reference database remained unmapped (Figure 2A; Figure S1;

Extended Experimental Procedures). In parallel, gene coding re-

gions from all reference genomes were annotated with KEGG

orthology groups (KOs). Reference genomes and KOs with low

confidence mapping were identified and excluded (Figure S2;

Extended Experimental Procedures). For each sample, coverage
584 Cell 160, 583–594, February 12, 2015 ª2015 Elsevier Inc.
across each KO-annotated region in each reference genome

was calculated, and coverage values across regions corre-

sponding to the same KO in the same genome cluster were

summed. We then used the average coverage of 13 single

copymarker genes, carefully selected for their universality, map-

ping accuracy, and coverage consistency (Figure S3; Extended

Experimental Procedures), to convert the calculated coverage of

each KO in each cluster to a copy-number estimate (Experi-

mental Procedures). Overall, this process estimated the copy

number, Vkcs, of each KO k, in each genome cluster c, detected

in each sample s (Figure 1). Notably, copy-number estimates

represent an average across the various genomes associated

with each cluster that are present in the sample and across the

potentially multiple genes associated with each KO. We further

performed an analysis of an extensive synthetic dataset to

confirm that this scheme accurately recovers species abun-

dances and copy-number values (Figures S4A and S4B;

Extended Experimental Procedures).

We applied this pipeline to a dataset of 109previously collected

gut metagenomic samples from a Danish/Spanish cohort (Qin

et al., 2010), mapping in total >2.45 billion 75 bp reads to 235

reference genomes grouped into 96 genome clusters (Table S1;

Extended Experimental Procedures). The average coverage

across the 13 marker genes (a proxy for the abundance of each

cluster in each sample) varied considerably across clusters and

between samples (Figures 2B and 2C). To limit any downstream

analysis tohigh-confidencecopy-numberestimates,we therefore

considered only genome clusters with sufficient coverage in a

sample (which we term ‘‘detectable’’ clusters; Experimental Pro-

cedures). We identified a total of 70 clusters that were detectable

in at least one sample, with an average of 16 detectable clusters in

each sample (TableS2).Overall, this analysis assignedcopynum-

ber values to �1.5 million KO-cluster-sample triplets, estimating

the copy number of thousands of KOs across a large array of

genome clusters in >100 samples (Table S3).

This dataset of copy-number estimates provides a first large-

scale account of gene-level strain variation among organisms

common to the human gut. Below, we mine this dataset to

explore neutral and adaptive variation in this highly complex

ecosystem in a manner that goes beyond species-level com-

parative analysis. Importantly, this dataset and the pipeline

described above can serve as a valuable resource for future

studies of compositional shifts in the human microbiome and

in other environments, linking metagenome-level differences in

gene abundance to genome-level variation.

Identifying Genes with Highly Variable and with
Set-Specific Variable Copy Number
Given the copy-number estimates obtained above, we set out to

identify specific KOs in specific clusters (KO-cluster pairs, or

KCs) whose copy number varied across samples. Notably, to

detect variation, we compared the copy number of each KC

across different samples rather than comparing the estimated

copy number in any given sample to the copy number in a refer-

ence genome, avoiding spurious variation predictions that may

result from annotation errors or bias in the set of reference

genomes. Clearly, many clusters can be detected in only a

few samples. To confidently detect copy-number variation, we



Figure 1. Schematic of Analysis Pipeline
Reads from metagenomic samples were mapped to KEGG-annotated reference genomes, grouped into species-level genome clusters. The total coverage of

each KO (KEGG orthology group), k, in each genome cluster, c, in each sample, s, was normalized by cluster abundance to calculate gene copy number Vkcs. KCs

(specific KOs in specific genome clusters) whose copy number varied significantly across samples were detected, as well as those whose copy number was

associated with host state (obesity, IBD).

See also Figure S3 and Table S3.
therefore only considered the 40 clusters that were detectable in

at least 10 samples.

We first set out to identify KCs that exhibit extreme and

prevalent variation across samples. Specifically, we calculated

the level of inter-sample variation in the copy number of each

KC and defined as highly variable those KCs whose variation

was at least two standard deviations greater than the average
variation of all KCs (Experimental Procedures). We used both

cross-validation analysis and synthetic samples to confirm the

robustness and accuracy of this approach (Extended Experi-

mental Procedures; Figure S4C). In total, this analysis detected

735 highly variable KCs spanning 261 KOs across 38 genome

clusters (Figure 3; Table S4). The number of highly variable

KCs in each cluster varied greatly, reaching up to 47 KCs in
Cell 160, 583–594, February 12, 2015 ª2015 Elsevier Inc. 585
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Figure 2. Genome Cluster Statistics

Themappability, abundance, and prevalence of each genome cluster (representing a species-level group) are shown in three vertically aligned plots. Clusters are

sorted by their prevalence across samples.

(A) Cluster mappability, as determined by a large-scale simulation assay measuring the accuracy of mapping reads extracted from the cluster’s genomes to a

database in which the genome of origin was removed. In this simulation, reads from clusters represented in the reference database by a single genome (marked

with a dot above the column) are expected to remain unmapped.

(B) The distribution of each cluster’s abundance across samples, as determined by the average coverage of 13 single-copy marker genes.

(C) Cluster prevalence (the number of samples in which the cluster was ‘‘detectable’’) within each host group, shown as a stacked bar plot.

See also Figures S1 and S2 and Tables S1 and S2.
the Roseburia intestinalis cluster (representing 4.05% of the KCs

in this cluster), with an average of 1.79% of the KCs in each clus-

ter (Table S5). We found no apparent relationship between the

amount of variation observed in a cluster and the number of

reference genomes in the cluster or the prevalence of the cluster

across samples, but we did observe a tendency toward high

variation in species from the Firmicutes phylum compared to

other species (t test, p < 0.05; see also Figure 3). Although the

majority of highly variable KOs (57.1%) were variable in just

one cluster, certain KOs were variable across many clusters,

with some KOs variable in ten or more different clusters.

The analysis above focused on KCs that exhibit extreme vari-

ation andonKCs that vary greatly acrossmanydifferent samples.
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Variation within other genes, however, may be more subtle and

may reflect, for example, adaptive variation that can be observed

in only a small set of samples.We therefore set out to additionally

identify set-specific variable KCs, wherein the copy number of a

given KC was relatively constant across most samples but devi-

ated significantly in a small subset of the samples (Experimental

Procedures). In this analysis, we further distinguished cases in

which aKCexhibited a consistently high copy number in this sub-

set of samples compared to all other samples (set-specific

increased copy number) from cases in which a KC exhibited a

consistently low copy number in this subset of samples (set-spe-

cific decreased copy number) or in which it exhibited increased

copy number in one subset and decreased in another. As



Figure 3. A Map of Variable KCs

Amatrix map representing the status of variable KOs (x axis) in each genome cluster (y axis). Colored bars represent variable KCs (highly variable KCs vary widely

in copy number across all samples, whereas set-specific variable KCs are increased and/or decreased in copy number in only a small subset of the samples),

while light gray bars indicate KCs with consistent copy number across samples, and KOs not present in a genome cluster are left white. Genome clusters are

ordered by phylogeny, and KOs are ordered by hierarchical clustering. The bar chart to the right of themap represents the fraction of KOs in each cluster identified

as variable. Above the map, certain groups of functionally related KOs are highlighted. The 314 KOs uniquely variable in the E. coli cluster (the majority of which

have only been annotated in E. coli-like genomes) were excluded due to space constraints.

See also Figure S4 and Tables S4–S6.
expected, we found that set-specific variable KCs were much

more common than highly variable KCs. In total, our analysis de-

tected 5,004 set-specific variable KCs covering 1,859 KOs

across the 40 genome clusters examined (Figure 3; Table S4).

In general, we observed more cases of set-specific increased

copy number than of set-specific decreased copy number, but

this ratio shiftedmarkedly across clusters, and in certain clusters

(i.e., Clostridium sp., Streptococcus thermophilus) mostly set-

specific decreased KCs were observed.

Detected Variation Captures Both Known and Novel
Strain Variation
As validation of our pipeline and results, we compared the set of

highly variable KCs obtained for each cluster to known variation

among the cluster’s sequenced reference genomes. Clearly, the

reference genomes in our database do not capture the full extent

of intra-species variation in the gut microbiome. Similarly, our

samples likely do not include much of the variation present in

our reference genomes, as many of these reference genomes

represent strains isolated from clinically distinct individuals,

phenotypically diverse cohorts, or non-gut samples. Accordingly,

a large number of genes that vary in copy number across refer-

ence genomes may still exhibit consistent copy number across

the gut samples analyzed above. Yet, the set of detected highly

variable genes, which aims to include genes that vary frequently

in their copy number across genomes, is likely to capture many

instances of known variation in gene content among available

reference genomes. Indeed, considering the 15multiple-genome

clusters in our database, a striking 81%of the detected highly var-
iable KCs also vary in copy number across reference genomes

(Figure 4). Moreover, in seven of these clusters, all highly variable

KCs also vary in copy number across reference genomes.

Notably, six of these clusters contain at least three genomes,

whereas the majority of the other clusters contain only two, sug-

gesting that more sequenced strains may be needed to fully

capture the variation associated with these clusters (and more

importantly, with clusters for which only a single genome was

available). Importantly, we demonstrated that a similar overlap

can be observed when comparing predicted variation to known

variation among a large collection of genomes not included in

our database, confirming that this overlap is not an artifact of

the specific reference genomes used in our analysis (Figures 4B

and 4C; Extended Experimental Procedures). Comparison of

set-specific variable KCs to known variation across reference ge-

nomes again confirmed that the variation detected greatly over-

lapped with known variation observed across sequenced strains

(Figure S5). Notably, however, set-specific variable KCs also

included many instances of novel variation, suggesting that the

set of reference genomes currently available does not capture

the full extent of copy-number variation in the gut. Comparison

of detected set-specific variation to variation observed across

two manually assembled Citrobacter strains further revealed sig-

nificant overlap (Extended Experimental Procedures).

Functions Associated with Variable Genes
We examined whether the detected copy-number variation was

associated with specific functions in each genome cluster. We

first used enrichment analysis to identify functions that were
Cell 160, 583–594, February 12, 2015 ª2015 Elsevier Inc. 587
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Figure 4. Comparison of Highly Variable KCs to Known Variation among Reference Genomes

(A) In each Venn diagram, the gray circle represents the set of all KCs in a given genome cluster, the pink circle represents the fraction of those KCs exhibiting

copy-number variation across the cluster’s reference genomes, and the red circle represents the set of KCs detected as highly variable. Overlap of the pink and

red circles indicates correspondence between known and detected variation. Each diagram is labeled with the cluster ID, representative species name, and

number of reference genomes.

(B and C) Additional variation in reference genomes that were not used as mapping targets is represented by either an orange circle (additional reference ge-

nomes from IMG) or a yellow circle (additional reference genomes from NCBI), compared to variation in included reference genomes (pink) and detected highly

variable KCs (red).

See also Figure S5.
over-represented among the set of highly variable KCs in each

cluster. We found that transport-related functions were over-

whelmingly prone to high copy-number variation (Table S6). Spe-

cifically, ten of the genome clusters analyzed were enriched for

variation in KCs associated with transport annotations, including

the general BRITE term ‘‘Transporter,’’ as well as more specific

modules related to either sugar or iron complex transport. For

example,within theBacteroides ovatus cluster, seven of the clus-

ter’s 66 transport-associated KCswere highly variable (Figure 5),

including all three KCs (K02013, K02015, K02016) involved in a

specific iron complex transport system module (M00240). Inter-

estingly, significant variation in sugar transport functions was

only found among clusters in the phyla Firmicutes and Actino-

bacteria, whereas Bacteroidetes clusters were uniquely associ-

ated with variation in the iron complex transport system (see

Table S6). Studies of cultured organisms from various environ-

ments and experimental evolution assays have suggested that

loss, amplification, and acquisition of transport functions consti-

tute a primary adaptive mechanism (Gevers et al., 2004; Heikki-

nen et al., 2007; Lee and Marx, 2012; Sonti and Roth, 1989);

here, we show that this flexibility in the copy number of transport

genes likely extends to a considerable proportion of prevalent gut

species and that, within this general class, specific transport

genes may facilitate adaptation to the gut environment.

We additionally found that motility-related KCs were highly

variable in the Eubacterium rectale genome cluster. Specifically,
588 Cell 160, 583–594, February 12, 2015 ª2015 Elsevier Inc.
in this cluster, 7 of the 38 highly variable KCs were bacterial

motility proteins, of which four were structural flagellar compo-

nents, two were involved in chemotaxis, and one was essential

for twitchingmotility (Hanet al., 2008).Motility proteins, andespe-

cially flagellar proteins, are widely associated with virulence and

immunostimulation, and the gain or loss of flagellar components

is believed to be an important adaptivemechanism (Borziak et al.,

2013; Heikkinen et al., 2007; Al Mamun et al., 1997). Moreover,

variation in these seven KCs was highly consistent within sam-

ples; most samples contained either detectable copies of all

sevenKCsor no (or lownumber of) copies of all of theseKCs (Fig-

ure S6). Though we found no variation in the copy number of any

of these genes among the three sequenced reference genomes

included in the Eubacterium rectale cluster in our database, a

recent study of 27 elderly gut metagenomes identified non-uni-

formcoverageof genes involved in the flagellumbiogenesis path-

ways of six Eubacterium and Roseburia species (Neville et al.,

2013), suggesting that the current reference genomes may not

capture the full dynamic range of these species.

Next, we considered the collection of set-specific variable

KCs and examined their functional annotations. Interestingly, hi-

erarchical clustering of set-specific variable KOs based solely on

their variation profile across the 40 clusters revealed dis-

tinct groups of functionally related genes that vary in a given

genome cluster or within multiple clusters (Figure 3). For

example, a large set of genes related to cell growth and
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Figure 5. Copy Number of Highly Variable Transport KCs in Bacteroides ovatus

The size and color of each square represent the copy number of each highly variable KCwithin each sample. Samples are grouped by host state (I, IBD; h, healthy;

o, obese). The copy numbers of the 13 marker KCs in this genome cluster are illustrated for comparison. See also Figure S6.
sporulation were all identified as set-specific variable KCs in the

two genome clusters associated with Clostridium sp. Similarly, a

set of sugar metabolism genes were all identified as set-specific

variable KCs in Roseburia intestinalis, and a number of antibiotic

resistance genes were identified as variable in multiple genome

clusters, primarily those in the Firmicutes phylum. An enrichment

analysis of functions associated with set-specific variable KCs in

each cluster additionally revealed a number of important func-

tions that were prone to copy-number variation (Table S6). For

example, genes in the lipopolysaccharide biosynthesis pathway

inDialister invisus andClostridium sp.were often observedwith a

higher copy number in a small set of samples. Interestingly, vari-

ation within functions related to sugar metabolism (i.e., KEGG

pathways galactose metabolism, starch and sucrose meta-

bolism, fructose and mannose metabolism, polyketide sugar

unit biosynthesis) was observed primarily within Bacteroidetes

clusters, whereas set-specific transport-related variation was

almost absent from these clusters. Other functions enriched for

set-specific variable KCs suggest transitions between virulent

states, such as motility in butyrate-producing bacteria (NCBI

accession FP929062), Eubacterium rectale, and Clostridium

sp.; streptomycin biosynthesis in Acidaminococcus sp.; lyso-

syme production in Bacteroides ovatus; the EHEC/EPEC patho-

genicity signature in Escherichia coli; and secretion systems

in butyrate-producing bacteria (NCBI accession FP929062),

Clostridium sp., and Escherichia coli. Within Escherichia coli,

type II secretion system genes were identified as set-specific

decreased copy-number KCs, whereas type III secretion system

genes were identified as set-specific increased copy-number

KCs. Overall, much of the observed variation appeared to be

associated with the way a species responds to and interacts

with its surroundings, highlighting the strong adaptive potential

of gut-associated bacteria.

Clearly, different cohorts could harbor different sets of strains

owing to an assortment of ecological or host-specific factors,

and accordingly different genes may vary in copy number in
different datasets. Notably, however, analysis of a second data-

set of 73 gut samples from a Chinese cohort (Qin et al., 2012)

yielded a marked overlap with our original Danish/Spanish

cohort in both the set of KCs identified as variable and

the set of functions enriched for copy-number variation

(Extended Experimental Procedures). These findings suggest

that, although variationmay be personal, certain genes and func-

tions (e.g., those related to environmental adaptation) may be

universally prone to variation.

Host State-Associated Variation
Although much of the variation across strains may reflect neutral

processes or transitory dynamics, some variation may repre-

sent adaptation to a specific host phenotype. To detect such

potentially adaptive variation, we identified variable KCs in which

the copy number in samples from obese or IBD subjects was

significantly different than in samples from healthy subjects

(Experimental Procedures). In total, we found 24 KCs whose

copy number was significantly associated with IBD and three

KCs whose copy number was significantly associated with

obesity (FDR < 0.05; Table S7).

Interestingly, a number of these KCs have been previously

implicated in adverse host health states. For example, in our

analysis, obesity was associated with a higher copy number of

thioredoxin 1 (K03671) in Clostridium sp. (Figure 6A), and indeed

thioredoxin reductase was recently shown to be enriched in the

cecal metaproteome of mice fed a high-fat diet (Daniel et al.,

2014). Such results are consistent with thioredoxin’s regulatory

role in maintaining redox equilibrium and the demonstrated

links between a high-fat diet and oxidative stress in mammals

(Furukawa et al., 2004). Additionally, in our analysis, the loss of

a ubiquinone-reducing gene (K00349; nqrD) from Bacteroides

plebeius was associated with obesity. A recent study in mice

showed that supplemental ubiquinone reduced inflammation

and metabolic stress accompanying a high-fat high-fructose

diet by reducing the expression of certain genes associated
Cell 160, 583–594, February 12, 2015 ª2015 Elsevier Inc. 589
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Figure 6. Copy-Number Variation of Host State-Associated KCs

Two KCs whose copy number was significantly increased in samples from a specific host state are shown. The size and color of each square represent the copy

number of the KC within each sample.

(A) The copy number of thioredoxin 1 (K03671) in Clostridium sp. is significantly increased in samples from obese subjects.

(B) The copy number of an MFS transporter gene (K08217) in the Roseburia inulinivorans genome cluster is significantly increased in samples from IBD subjects.

See also Table S7.
with stress-response (Sohet et al., 2009), while mice not

receiving the supplement gainedmore weight than their counter-

parts. Importantly, however, ubiquinol, the reduced form of

ubiquinone, has recently been shown to be the more readily ab-

sorbed and more active form of the compound (Langsjoen and

Langsjoen, 2014), raising the possibility that loss of microbial

ubiquinone-reducing capabilities from certain species may hind-

er the effectiveness and protective capacity of ubiquinone in the

host. Other findings shed new light on the role of individual spe-

cies in disease, with evidence of variation associated with com-

mon disease hallmarks, such as pathogenicity-related secretion

and antibiotic resistance. In Roseburia inulinivorans (Figure 6B),

increased copy number of a gene (K08217) coding for a major

drug efflux protein known to play a role in antibiotic resistance

was highly associated with IBD-afflicted individuals. Similarly,

HlyD (K01993), an essential component of RTX hemolytic toxin

secretion (Pimenta et al., 2005), exhibited increased copy num-

ber in IBD samples in Bacteroides uniformis. See Table S7 for

a full list of disease-associated KCs. Interestingly, none of the

obesity-associated KCs and only 3 of the 24 IBD-associated

KCs were found to vary significantly in the Chinese cohort

described above, among whom only one individual was obese

and none were reported as having IBD.
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Strain-Level Deconvolution of Microbiome Composition
and Intra-Species Population Structure
Clearly, the microbiomes of different individuals can house

multiple strains of the same species with potentially different

relative abundances. Our copy-number estimates for each clus-

ter accordingly represent average copy numbers across the

different strains in the sample. Next, we therefore examined

whether these estimates can be used to obtain insights into

strain-level population structure, going beyond species-level

composition assays and focusing specifically on the composi-

tion of strains within each genome cluster rather than on the

abundance of the cluster itself.

First, we explored howwell the copy-number profiles obtained

for each genome cluster in each sample can be explained by

known reference strains, using a regression analysis to decon-

volve these copy-number profiles into a linear combination of

the strains included in our database (Experimental Procedures).

Obviously, these strains may not encompass the full set of

strains present in the samples analyzed, yet such an analysis

may be useful in examining what portion of the observed varia-

tion can be accounted for by known strains and what portion

represents potentially novel variation. Indeed, we found that, in

well-characterized clusters with many sequenced genomes,
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Figure 7. Predicted Strain-Level Population Structure within Clostridium sp

(A) A linear regression analysis was used to model the copy-number profile obtained for cluster 110 (Streptococcus thermophilus) in each sample as a com-

bination of known reference genomes, with prediction weights shown as stacked colored bars. Prediction accuracy (R2) is indicated above each bar. Samples

with low or negative R2 values potentially contain variation that cannot be explained by any combination of known reference genomes.

(B) A principal coordinate analysis depicting the differences between the copy-number profiles obtained for this genome cluster in the various samples (open

circles), as well as the copy-number profiles of reference genomes (filled circles).

See also Figure S7.
the copy-number profiles of most samples could be well ex-

plained by a linear combination of known strains. For example,

in the Escherichia coli cluster that comprised 63 sequenced

genomes in our database, 76% of the variation in copy number

could be explained on average by these genomes (R2 = 0.76 ±

0.12). In this cluster, the inferred representation of each strain

differed widely across samples, with some strains (i.e., Escheri-

chia coli O111:H- str. 11128) highly represented across multiple

samples and others found in just one sample. However, for less

well-characterized clusters with only a few known strains in our

database, in some cases just a subset of the observed copy-

number variation could be explained. For example, the four

known strains of Streptococcus thermophilus could be used to

explain a majority of the variation observed in some of the sam-

ples (R2 > 0.5) yet failed to explain the variation observed in four

of the samples (R2 < 0), suggesting the existence of potentially

novel, yet-to-be-sequenced variation (Figure 7A).

To further compare copy-number variation profiles across

samples and to examine variation that may not be captured by

known strains (including notably, in clusters comprising only

one known strain), we used a principal coordinate analysis.

This analysis revealed a complex population structure within

each cluster, with marked differences among samples indi-

cating the prevalence of personalized variation. For a number

of genome clusters, however, samples appear to group into

distinct sets, potentially reflecting individuals with similar

intra-species population structures (Figure 7B). Moreover, by

including the reference genomes in this principal coordinate

analysis, we were able to distinguish previously captured
variation versus novel variation observed across samples. For

example, the principal coordinate plot for the Streptococcus

thermophilus genome cluster (Figure 7B) clearly demonstrates

that, although the copy-number profiles of most samples clus-

tered tightly with several known reference genomes, the four

poorly explained samples mentioned above clustered together

and contained variation that was distinct from any reference

genome. Such a pattern may indicate the presence of novel

shared strains, providing a promising basis for targeted seq-

uencing. Similar patterns were also observed in other clusters,

in which a distinct, tightly clustered subset of samples or individ-

ual samples exhibit markedly different copy-number profile from

that of any sequenced genome (Figures S7A and S7B). Overall

though, each genome cluster exhibited a unique population

structure across individuals, highlighting the complex suite of

forces governing taxonomic composition in the gut (Levy and

Borenstein, 2013).

DISCUSSION

By and large, closely related organisms tend to encode similar

sets of genes. This consistency is in fact often used to infer func-

tional capacity from taxonomy (Langille et al., 2013; Zaneveld

et al., 2010). Clearly, however, this relationship between phylog-

eny and gene content is imperfect, and each species represents

a large collection of strains that differ in the set of genes they

encode, the copy number of these genes, and ultimately, their

functional capacity. Above, we have focused on identifying in-

stances in which this relationship between microbial species
Cell 160, 583–594, February 12, 2015 ª2015 Elsevier Inc. 591



and genes breaks, presenting a large-scale analysis of copy-

number variation in a diverse array of gut species. Our analysis

has demonstrated that copy-number variation is prevalent in

the gut environment, with some species exhibiting significant

copy-number variation in >20% of their genes. Such variation

may induce significant microbiome-wide shifts andmay account

for at least some of the observed discrepancies between trends

observed at the species levels versus trends measured at the

gene level. Moreover, intra-species variation was shown to be

especially prevalent in genes involved in specific functions,

most notably functions that impact the way an organism inter-

acts with its environment such as transport and signaling pro-

cesses. This may suggest an adaptive dynamic by which certain

species respond to changes in community composition or in the

gut niche and a potentially crucial role of the gut environment

in shaping bacterial evolution (Levy and Borenstein, 2013;

Shapiro et al., 2012). Other highly variable functions, such as

lipopolysaccharide biosynthesis, cell motility, and secretion sys-

tems, may represent changes in virulence as organisms respond

to host immune responses. Interestingly, many of these same

functions were highlighted in a previous study as more difficult

to accurately correlate with 16s data (Langille et al., 2013). Our

analysis further identified variable functions that may correlate

with host states, exhibiting differential copy number in specific

genomes. It remains unclear, however, whether such host

state-associated variation is a cause or an effect. Our framework

additionally facilitated the inference of intra-species population

profiles for each individual, suggesting that most individuals har-

bor multiple strains of each species.

Though still far from an exhaustive catalog of strains that may

be present across all human gut microbiomes, the framework

presented above represents the most comprehensive account

of copy-number variation in the human gut microbiome to

date. It is our hope that this framework and the results presented

here will inform future studies of strain-level microbiome compo-

sition, demonstrating the extent of functional information that is

lost by limiting characterization to the level of species and

prompting further investigation and sequencing of strain-level

features. Yet, there are clearly a number of caveats that should

be considered in designing such future efforts. First, our analysis

is limited to the detection of variation in gut species for which at

least one fully sequenced genome is available, and future studies

may benefit from additional genomes. Notably though, we did

not detect significantly more variation in clusters for which

more reference genomes were available. In addition, our pipe-

line was designed to detect gene losses or amplifications but

cannot identify gain of genes that are not present in any of the

reference genomes included in the genome cluster. Such gain

or transfer eventsmay represent an additional substantial source

of intra-species variation (Smillie et al., 2011). Our framework

could, however, further facilitate future efforts to study sequence

divergence among duplicated genes, informing our view of neo-

functionalization and conservation processes in themicrobiome.

Notably, in our analysis, we focused on detecting high-confi-

dence instances of variation, applying conservative parameters

for read alignment and for variability calling. Specifically, we limit

our analysis to ‘‘detectable’’ genome clusters, defined as those

with >13 coverage in the sample. Our analysis of a synthetic da-
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taset confirmed that, in such clusters, copy-number estimates

can be inferred with 96% accuracy but that prediction accuracy

dropped significantly in genome clusters with lower coverage

(Figure S4B and Extended Experimental Procedures). With 13

million reads per sample (the lowest sequencing depth in the

cohort analyzed), species that comprise >0.4% of the sample

are likely to be considered detectable by our pipeline (while a

higher sequencing depth of a sample will clearly allow analysis

of even rarer species). Future studies may relax some of these

parameters or incorporate additional information (e.g., gene

conservation) to detect more subtle variation. Finally, as with

most studies relating microbiome composition to function, our

analysis relies on the availability of functional gene databases,

which may contain incomplete or erroneous annotations. By

considering variation across samples rather than variation from

reference genomes, our analysis is largely robust to such anno-

tation inaccuracies. Interestingly, however, variable KCs identi-

fied by our analysis were much more likely to lack a functional

annotation than non-variable KCs, suggesting that much of the

detected variation in gene content has as yet uncharacterized

consequences. Combined, these results highlight both the

need for additional genome sequences and the importance of

continued efforts for characterizing gene function.

Ultimately, analysis of intra-species variation inmicrobial com-

munities is crucial for understanding the complex relationship

between species composition and community-level functional

capacity. Our analysis, quantifiably characterizing such variation

in the gut microbiome, is an important first step in this direction,

and the resulting dataset provides an essential resource for

future predictive studies.

EXPERIMENTAL PROCEDURES

Metagenomic Samples and Reference Genomes

Gut metagenomic data for 109 Danish and Spanish individuals, including indi-

viduals afflicted with obesity or IBD, was obtained from (Qin et al., 2010). A list

of 261 dominant and prevalent human gut microbial strains, grouped into 101

genome clusters (Table S1) based on sequence similarity of 40 marker genes,

was obtained from (Schloissnig et al., 2013). Nucleotide contig sequences,

gene calls, and amino acid protein sequences were downloaded for each

genome, and protein sequences were annotated with KEGG orthologous

groups (KOs). See Extended Experimental Procedures for more details.

Calculation of Copy-Number Estimates

Shotgun metagenomic reads were aligned to the set of reference genomes

with BWA, using parameters and filters carefully validated by extensive simu-

lation analyses (Figures S1 and S2; Extended Experimental Procedures). In

total, 2,469,102,286 reads were mapped. Average coverage over each gene

region was determined using samtools (Li et al., 2009), and the coverage of

each KC (KO-cluster pair) was obtained by summing over all genes annotated

with the sameKOand genome cluster. KC coveragewas normalized by cluster

abundance, defined as the average coverage over a set of 13 universal marker

KOs (Figure S3B; Extended Experimental Procedures), to obtain the estimated

copy number Vkcs of each KO k, in each cluster c, and in each sample s.

‘‘Detectable KCs’’ in a sample were defined as thosewith Vkcs > = 0.5. ‘‘Detect-

able clusters’’ within each sample were defined as those with at least 12

detectable marker KCs and average marker coverage R1. KCs that were

not detectable in any sample were removed from the analysis.

Detection of Highly Variable and Set-Specific Variable KCs

For each of the 40,088 KCs present in clusters detectable in at least ten sam-

ples, the median copy number (baseline) across samples and the MAD



(median absolute deviation) from this baseline were calculated. KCs with a

MAD more than 2 SDs from the MAD distribution mean (MAD > 0.6346)

were considered highly variable. KCs in which at least 10% of samples had

a copy number that exceeded the baseline by this threshold were considered

set-specific increased variable KCs.Set-specific decreased KCswere similarly

defined as KCs in which at least 10% of samples had a copy number that fell

below the baseline by this threshold.

Detection of Host State-Associated KCs

A KC was defined as obesity associated if the copy numbers in samples from

obese individuals were significantly higher or significantly lower than the copy

numbers in samples from non-obese individuals, according to a two-sample

t test (FDR-corrected p < 0.05). IBD-associated KCs were similarly defined.

Samples that were labeled as both obese and IBD were omitted from this

analysis.

Copy-Number Profile Deconvolution and Principal Coordinate

Analysis

For each sample, a non-negative least-squares linear regression analysis was

performed to obtain the linear combination of reference genomes in each

multi-genome cluster, optimally explaining the copy-number estimates of

variable KCs. The regression was constrained such that the sum of genome

weights for each sample and cluster equaled one. Prediction error was defined

as the R2 value for each sample. A principal coordinate analysis was also per-

formed for every genome cluster, operating on the pairwise Euclidian distance

matrix of set-specific variable KC copy numbers in each sample and each

sequenced reference genome.
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Supplemental Information
EXTENDED EXPERIMENTAL PROCEDURES

Metagenomic Samples
Metagenomic data were obtained from (Qin et al., 2010), a study characterizing the gut microbiome of Danish and Spanish individ-

uals, including individuals afflicted with obesity or IBD. Illumina-derived shotgun reads (75bp) from 109 samples were downloaded

from the DDBJ ftp site (Kodama et al., 2012) at ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastq/ERA000/ERA000116/ (Table S2).

Additional samples from this study sequenced with 44bp reads were not included in our analysis. A second dataset, including 73

samples from a Chinese cohort was obtained from (Qin et al., 2012).

Reference Genomes and Annotation
A list of 261 dominant and prevalent human gut microbial strains was obtained from (Schloissnig et al., 2013). Reference genomes

with corresponding taxon IDs were downloaded from NCBI’s GenBank when present, or from NCBI’s draft genome submissions.

One genome was not present in either and was omitted from further analysis (Salmonella enterica subsp. enterica serovar Paratyphi

B, taxonID: 272994). Nucleotide contig sequences, gene calls, and amino acid protein sequences were downloaded for each

genome, and protein sequences were annotated with KEGG orthologous groups (KOs) using BLASTp against KEGG v. 8/6/2012

limited to prokaryote peptide sequences. Proteins with multiple best hits were annotated with all best hits, weighted by the number

of hits for each KO.

Alignment of Reads to Reference Sequences
Shotgun short reads from the 109 metagenomic samples were aligned to the 260 reference genomes using BWA. Extensive simu-

lations were performed to determine appropriate mapping parameters and identify reliable mapping targets (see sections below).

Each read was mapped to the reference sequence(s) with the smallest edit distance, weighted by the number of tied hits. Reads

with an edit distance > 5, or reads mapping equally to more than 75 regions were considered unmapped. In total, 2,469,102,286

reads were mapped to one or more reference genomes with these parameters.

Evaluating Reference Genome Cluster Definitions and Read Mappability
The 260 reference genomes were assigned to 101 clusters, according to sequence similarity of 40 marker genes (Schloissnig et al.,

2013). The clustering was performed in a previous study, with clusters serving as a proxy for species and individual genomes within a

cluster representing instances of intra-species genomic variation. Clusters ranged in size; many clusters contained just one genome,

while the largest cluster contained 63 genomes (Table S1). Clusters could contain genomes from a single taxonomic clade or several

clades, though most clusters agreed with current species definitions.

To validate that these clusters were suitable for our mapping pipeline, we performed multiple simulation-based analyses. Spe-

cifically, we aimed to examine whether short reads that originate from a given genome and a given gene map to the correct

genome cluster and to the correct KO. Notably, such reads are not necessarily required to map solely to the genome from which

they originated (as this genome will often not be available in the reference genomes database) nor to the exact gene they origi-

nated from. Rather, reads should map to some genome (or genomes) from the same cluster, and to gene regions with the same

KO annotation. Moreover, for our pipeline to correctly estimate gene copy numbers, mapping should also be robust to sequencing

errors and should correctly exclude reads originating from genomes not represented by any of the clusters included in our

analysis.

To this end, custom perl scripts were used to simulate reads by extracting randomly selected stretches of 75 base pairs from the

KO-annotated gene regions of 10 query genomes from 8 different genome clusters (Bifidobacterium longum NCC2705, Strepto-

coccus mitis B6, Bacteroides ovatus ATCC 8483, Bacteroides vulgatus ATCC 8482, Escherichia coli SMS-3-5, Alistipes putredinis

DSM17216, Citrobacter youngae ATCC 29220, Eubacterium rectale ATCC 33656, Prevotella copri DSM18205, Bacteroides vulgatus

PC510). Simulated reads were then aligned concurrently to the set of reference genomes, with a maximum allowable edit distance of

5 and up to 75 tied best alignments reported (see also next section, ‘‘Validating maximum edit distance for read alignment’’). Align-

ment results were parsed to bin each read according to the cluster and KO from which the read originated (query KC) and the cluster

and KO to which it mapped best. Specifically, reads could be unmapped, mapped to > 75 different regions, mapped to a genome

from the correct cluster or mapped to a genome from an incorrect cluster, and reads could bemapped to a region associated with the

correct KO, an incorrect KO, an unannotated gene region, or an intergenic region. Reads mapping to multiple regions were given

fractional counts distributed evenly across the set of corresponding KCs. For regions with multiple annotations, if any of the query

KOs matched any of the target KOs, the target was considered to be the ‘right KO’.

We first mapped 45,855 simulated KO-annotated reads from the 10 query genomes above to the full set of 260 reference genomes

(which includes the 10 query genomes). As expected, each read correctly mapped to the genomic region from which it originated.

Clearly, however, many reads mapped equally well to other regions. When distributing read counts across all tied alignments as

described above, we found that 62.1% of fractional counts were assigned to the correct KO in the original genome, 36.2% were as-

signed to the correct KO in a different genome from the same cluster, and only 1.7% of fractional counts were incorrectly assigned

(Figure S1A); 0.4% were assigned to the wrong cluster, while 1.3% were not assigned to any cluster (either because the aligned re-

gion was intergenic or unannotated, or the read mapped to > 75 regions). This finding suggests that the cluster definitions and
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parameters used allow reads to map uniquely to the genome of origin or to an identical region from another genome in the same

genome cluster, and that such identical regions are only rarely found in another genome cluster.

To assess the effect of short-read sequencing errors, we next applied a position-dependent error profile created with Ibis (Kircher

et al., 2009) from an Illumina sequencing run, uniformly magnified with custom perl scripts to achieve 1.5% error rate. These error-

adjusted reads were then aligned to the set of 260 reference genomes, as above. Evidently, the addition of an error model did not

markedly change the mapping accuracy observed above (and none of the read mapping statistics reported above changed by

more than 1%; Figure S1B). Again, relatively few reads remained unmapped (e.g., reads assigned to the ‘no cluster’ bin, which

may now also include reads that were unmapped due to sequencing errors), and reads from each genome were still far more likely

to be aligned to regions within the correct genome cluster rather than regions in another genome cluster.

As noted above, a primary assumption of our read alignment pipeline is that reads from a strain which would group with one of the

clusters in our database but for which a reference genome is not yet available, will still map to a reference genome within the correct

cluster. This allows us to detect novel intra-cluster variation at regions of altered coverage. We further assume that such reads will

map to regions from the same orthologous group of genes, as defined by KEGG (KOs). To validate these assumptions, we re-aligned

the error-adjusted reads from the above simulation to the reference database, but now, when aligning each read, we removed the

genome of origin from the database. Overall, we found that among reads for which the query KCwas present in the database, 66.8%

of fractional counts were correctly mapped to the same KC as the query, while 20.8% were incorrectly unmapped, and only 0.8%

weremapped to the wrong KC (Figure S1C). In some cases however, removing the genome of origin resulted in a reference database

in which the correct KC was no longer present – either because the removed genome was the only one in the cluster, or because no

other genome in the cluster contained the KO. In these cases, we defined an unmapped read as ‘correctly unmapped’, while a read

mapping to any other KC was defined as ‘incorrectly mapped’. Among reads for which the query KC was no longer present, 98.9%

were correctly unmapped, and 1.1% were mapped to another KC. These findings indicate that the specificity of our pipeline is high;

evenwhen the genome of origin was removed from the database, readsmostly aligned to the query KCwhen it was present, andwere

almost always unmappedwhen it was not. Notably, a significant number of reads remained unmapped at amaximum edit distance of

5 when a correct KC was present. However, most of these reads came from 2 specific genomes, while the false negative rate in the

other 8 genomes was very low. As noted below, we address extreme cases of genomes with consistently false mapping by filtering

the set of reference genomes and removing genomes with high mapping error rates.

To determine whether these trends hold true on a more global scale, below we additionally examined simulated reads from all 260

reference genomes (see ‘Determining mapping error rates and filtering clusters and KOs’).

Validating Maximum Edit Distance for Read Alignment
Since edit distance was used as the primary threshold for short read alignments, we additionally performed a simulation-based anal-

ysis to confirm that a maximum edit distance (MED) of 5 would allow reads to be aligned uniquely to the correct KC, while minimizing

both the number of unmapped reads and incorrectly mapped reads. For this simulation, we again mapped the error-adjusted reads

simulated from all 260 genomes to a reference database in which the genome of origin had been removed as described above, but

this time allowed best alignments at a range ofMEDs from 0 to 10.We then examined changes inmapping accuracy over this range of

MEDs (Figure S1D). We found that at all MEDs greater than 0, the majority of reads were either correctly mapped or correctly un-

mapped (ie., when the query KC was no longer in the reference database). The number of correctly mapped reads increased rapidly

from a MED of 0 to a MED of 5, and remained relatively stable at higher MEDs. Notably, the number of incorrectly mapped reads

continued to increase over the entire range of MEDs tested, suggesting that a MED much higher than 5 should not be used. Among

reads for which the KC was present, the major source of erroneous mappings was to unannotated regions in the correct cluster (Fig-

ure S1D-inset). This may imply that the correct KO in fact exists in this cluster, but has not been correctly annotated as a gene, or has

perhaps lost its functionality and become a pseudogene. Though these mapping errors stabilized at MEDs > 5, the rate of incorrect

mappings to the right KO in the wrong cluster continued to increase both for reads for which the KC was present in the database, as

well as those for which it was absent. In light of the above analysis, a MED of 5 was used in the alignment of all sample data to the 260

reference genomes.

Determining Mapping Error Rates and Filtering Reference Genomes and KOs
To confirm that the mapping accuracy observed above for the 10 query genomes and the mapping parameters optimized in the pre-

vious section for the read alignment pipeline apply on a more global scale, we simulated reads from all 260 reference genomes and

repeated the analysis described above. We found that the majority of reads still mapped to the correct KC when it was present in the

database (65.1%), and correctly remained unmapped when it was not (23.1%), with a total error rate (incorrectly mapped + incor-

rectly unmapped) of only 11.8%.

To further improve the accuracy of our pipeline, we additionally examined whether there were a small number of genomes or KOs

which were especially prone to incorrect mapping and that contributed disproportionally to observed inaccuracies, potentially due to

various evolutionary and technical factors. We therefore assessed the accuracy of our pipeline for each of the 260 genomes (Fig-

ure S2A) and each of the 4,304 KOs from which at least 100 reads had been simulated (Figure S2C). Specifically, we used the sim-

ulations described above and calculated a mapping error rate for each genome and each KO, defined as the percent of simulated

reads originating from the KOor genome that were incorrectly unmapped or incorrectly mapped.We identified 25 genomeswith error
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rates > 40% (Figure S2B). Excluding these genomes from our analysis, we find that the overall genome-wide error rate is reduced by

nearly half; among the remaining set of 235 genomes, 68.7% of reads were correctly mapped, while 25.1% of reads were correctly

unmapped, and only 6.2% of reads were incorrect (1.4% incorrectly mapped; 4.8% incorrectly unmapped). The rest of the analysis

was carried out with this filtered set of 235 genomes, corresponding to 96 clusters. Error rates for the KOs varied greatly, however the

vast majority (4,272 KOs) had an error rate % 50%. Most of these errors were due to incorrectly unmapped reads and only 8.5% of

KOs had any incorrectlymapped reads. These errors could conceivably be due to eithermisannotation or low intra-species sequence

conservation, among other factors. For the rest of our analysis, we focused only on KOswith a combined error rate% 50%, excluding

the 35 KOs with a higher error rate (Figure S2D).

Identifying and Validating Marker KOs
We set out to identify a set of marker KOs whose coverage could be used as a proxy for the abundance of each genome cluster in

each sample. Ideally, each of these KOs would be present in exactly one copy in each reference genome (high universality), would

have a lowmapping error rate in our simulated alignments (high alignment accuracy), andwould have consistent relative coverage by

reads from any given metagenomic sample (high coverage consistency). We accordingly obtained the set of 40 marker COGs used

by Schloissnig et al. (Schloissnig et al., 2013), translated COG annotations to KO annotations using a KEGG-generated mapping file

(http://www.genome.jp/files/ko2cog.xl), and filtered the associated KOs to a smaller set based on the three criteria described above.

Specifically, we defined universality as the percent of reference genomes (out of 260) in which the KO had a copy number > = 1. We

defined alignment accuracy as 1 minus the KO mapping error rate (see Determining mapping error rates and filtering genomes and

KOs, above). To assess coverage consistency, we first summed the coverage of each KO in each sample across all clusters, normal-

ized by the mean within each sample, and recorded the distance between these values and 1. For each KO, coverage consistency

was defined as 1 minus the average across all samples. We filtered the 40 KOs to identify those with universality > 0.95, alignment

accuracy > 0.9, and coverage consistency > 0.85 (Figure S3A). 13 KOs met all three criteria (Figure S3B) and were used in the final

analysis as marker KOs for calculation of cluster abundance (see Experimental Procedures).

Comparison of Highly Variable and Set-Specific Variable KCs to Known Strain Variation
To verify our data processing pipeline, we examined the overlap between KCs identified as variable across samples by our analysis

and KCs that vary in copy number across reference genomes in our database. As described in the main text, overall, this overlap was

very high (80.9% for highly variable KCs, 70.4% for set-specific variable KCs). To ensure however that this high overlap was not due

to some detection bias stemming from the use of these reference genomes in our pipeline, wewished to confirm that a similar overlap

can also be observed when comparing our predicted variation to variation found between genomes not included in our database.

We therefore first identified three single-genome clusters - cluster 22 (Dorea longicatena), cluster 23 (Ruminococcus lactaris), and

cluster 34 (Dorea formicigenerans) – each of which could be associated with an additional annotated reference genome from IMG

(Markowitz et al., 2012) representing a different strain from this cluster (Dorea longicatena AGR2136, Dorea formicigenerans

4_6_53AFAA, Ruminococcus lactaris CC59_002D). These ‘new’ genomes were not included in our reference database and were

therefore not used as targets in the read alignment process. For consistency, we downloaded from IMG the KO annotations for

both the ‘new’ genomes and for the three corresponding ‘reference’ genomes already in our database, and limited our analysis to

KCs for which IMG annotations for the reference genomes agreed with the annotations in our database. We also examined 44

newly-sequenced reference strains from the NCBI database that were sequenced after our initial analysis, and were therefore not

included in the original alignment and annotation pipeline. We annotated each of these additional genomes using the same KEGG

BLAST pipeline as with the main reference set (see Experimental Procedures).

We compared the KCs identified as variable by our analysis with KCs that vary in copy number between the reference genomes

used formapping and the newly obtained genomes from either IMGorNCBI. Examining the variation present in the IMGgenomes, we

find high overlap with detected variable KCs, with 71%, 64%, and 39% of the KCs that were identified as highly variable across sam-

ples by our analysis in clusters 22, 34 and 23 respectively corresponding to KCs that vary in copy number between the reference

genome and the new genome (Figure 4B). Importantly, these values are comparable to the overlap observed in the 4 genomes clus-

ters in our database in which two reference genomes were included as alignment targets (mean 63%), suggesting that variation de-

tected by our pipeline was not unduly influenced by the specific strains used as references during read alignment. When examining

set-specific variable KCs, this overlap was still high (47%, 45%, and 28% for the three clusters respectively), yet as demonstrated for

other clusters, identified variable KCs further included many instances of novel variation (Figure S5B). Examining the additional ge-

nomes from NCBI (Figures 4C and S5C) we find 302 instances in which copy number variation detected in our samples (including 39

highly variable KCs and 263 set-specific variable KCs) was reflected in copy number differences in these additional sequenced refer-

ence genomes. In the two cases in which additional genomes were examined for clusters that originally were represented by only a

single reference, over 70%of the detected highly variable KCs, and close to 60%of set-specific variable KCs exhibited copy number

differences between the original and additional genome.

As additional validation, we compared our results to specific instances of known copy number variation detected across two

manually assembled genomes representing distinct strains of Citrobacter found in the deeply sequenced gut microbiome of a pre-

mature infant (Morowitz et al., 2011), and observed a significant overlap in the sets of variable genes. Specifically, functional differ-

ences between the known strains included the presence or absence of fimbrial genes and genes involved in phenylacetate
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degradation. Within our dataset, we found that 13 of the 14 phenylacetate degradation KCs in the genome cluster containing Citro-

bacter genomes, and 7 of the 12 fimbrial KCs were identified as set-specific variable KCs. While it is not expected that our samples,

obtained from European adults, would necessarily harbor the same strains found in a single premature infant, the similarities in the

types of functions that are subject to increased or decreased copy numbers are intriguing.

Cross-Validation of Variable KCs
To examine the robustness and sensitivity of our pipeline, we performed a cross-validation analysis, testing whether significantly high

variation detected using a subset of our samples is predictive of variation observed in the remaining non-overlapping subset of sam-

ples. We focused on the 30 genome clusters that were identified as present in at least 20 samples. For each cluster, the samples

containing this cluster were randomly divided into 5 equally populated cross-validation groups. For each cluster we then performed

5 rounds of highly variable KC detection (as defined by our pipeline), each time leaving out a different sample group (testing set) and

detecting variation only based on the remaining 4 groups combined (training set). We then examined whether KCs detected as highly

variable in the training set also exhibited significantly higher variation among samples in the testing set by comparing the median

absolute deviation of these genes to the median absolute deviation of KCs not detected as variable and using a t test to assess sig-

nificance. We found that across all rounds of cross-validation and in each of the 30 clusters tested, genes detected as highly variable

in the training set indeed exhibited higher variation in the testing set, confirming the robustness of our pipeline and demonstrating that

high variability observed in the copy number of certain genes is not merely due to some extreme (and potentially spurious) variation in

just one or a few samples.

Mock Community Simulation and Analysis
To assess the accuracy of our pipeline and the resolution of our variable KC detection scheme, we created a synthetic dataset of

metagenomic samples in which cluster abundances and KC copy numbers were known a priori. Specifically, expanding on the simu-

lation procedure described in (Carr and Borenstein, 2014), we generated 40 simulated samples, each of which consisted of 13million

75-bp reads (comparable to the sample with the lowest sequencing depth in the Danish/Spanish cohort analyzed in our study) ex-

tracted at random from a sample-specific community of reference genomes. To generate these samples, 50 reference genomes from

50 different clusters (minimizing confounding variation) were chosen at random to be included in the simulation. For each sample, the

community was constructed by randomly assigning a relative abundance (up to 25 fold variation) to each of the 50 reference ge-

nomes. We introduced gene-level variation by deleting or duplicating a subset of 50 ± 35 randomly selected genes in each genome,

using a probabilistic model that assigned randomly chosen gain and loss rates to each of these genes. 75-bp regions were then ex-

tracted from this simulated community of genomes, and subject to a 1.5% sequencing error model (see (Carr and Borenstein, 2014)

for more details). We then used our framework to analyze these simulated samples, aligning simulated reads to the original set of 260

reference genomes, calculating species abundances and KC copy numbers as defined by our pipeline, and calling copy number

variation.

We compared the obtained species abundances, copy number estimates, and predicted sets of variable KCs to the parameters

used to generate the simulated samples in order to quantify the accuracy of our pipeline and its ability to recover species and gene

features. As demonstrated in Figure S4A, species abundance prediction was extremely accurate with a correlation of 0.993 (p <

10�300; Pearson correlation test) between predicted and real relative abundance values across the 40 simulated communities and

50 species analyzed, confirming our marker genes-based approach for inferring community composition. Similarly, we confirmed

that our copy number estimates correctly recover the copy number of each gene in each genome cluster (Figure S4B). Copy number

estimation accuracy increased with coverage, from 87.6% for genome clusters with low coverage (1x-2x), to 97.8% for clusters with

higher coverage (> 5x). Estimation accuracy also depended on the underlying copy number, with low copy numbers predicted more

accurately than high copy numbers. Overall, the copy number of 96% of KCSs were correctly predicted in ‘detectable’ genome clus-

ters (coverage > 1x as defined by our pipeline). Importantly, overall estimation accuracy dropped to 60.1% for undetectable clusters

(coverage < 1x), justifying our decision to remove such clusters from downstream analysis. We further examined how many of the

KCs in which variation was introduced when simulating the samples were identified as variable by our pipeline. Overall accuracy

in detectable clusters was high (98.1%). Sensitivity and specificity were also high (98.8% and 98.1% respectively) though specificity

decreased for KCswith high underlying copy numbers (e.g., 81.4% for KCswith copy number 4 and 70.1% for KCswith copy number

5), potentially due to decreased accuracy in copy number estimates reported above and resulting spurious inter-sample variability.

Indeed the vast majority of KCs with high median copy number in the dataset analyzed in the main text were detected as variable by

our pipeline, and while most of them likely represent true instances of variation (note, for example, that 77.6% of the KCs with median

copy number > = 5 vary in copy number among the genomes included in our reference set), our confidence in detecting variability in

such KCs may be limited. Importantly, however, such KCs represent a very small fraction of the KCs in this dataset (e.g., only 0.56%

of KCs have median copy number > = 5). Yet, to confirm that such potentially spurious variable KCs do not affect our findings, we

repeated our analysis of variable KCs, filtering out all KCs with median copy number > = 5 (see Table S4). We found that this did not

qualitatively change the trends reported in the main text. Specifically, of the functional enrichments reported, 85% (91/107) still held

with this filtered set of variable genes (Table S6). Similarly, the results reported in the main text with regard to individual variable KCs

were not affected by this filtering. Finally, we examined whether our pipeline correctly classified KCs as highly versus set-specific

variable, plotting the recall of variable genes and their classification as a function of the percentage of simulated samples in which
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each KC was deleted or duplicated (Figure S4C). This analysis again demonstrated that our pipeline not only successfully recovered

the majority of variable KCs but was also able to distinguish between high frequency variation (KCs that vary in many samples) and

set-specific variation (KCs that vary in only a small subset of samples).

Analysis of Variable Functions in an Additional Sample Set from a Chinese Cohort
Our findings in the Spanish/Danish cohort suggest that genes associated with specific functions (and in specific species) may be

more prone to copy number variation than others. We therefore wished to examine whether the set of KCs and functional classes

detected in each species as variable are similar across different cohorts. To this end, we applied our mapping and analysis pipeline

to a second dataset of 73 gut microbiome samples from a Chinese cohort (obtained from (Qin et al., 2012)), and compared the de-

tected variation in this dataset to variation detected in our original Danish/Spanish cohort. Mapping parameters and variability detec-

tion schemes were identical to those used for the primary dataset. Examining the 73 samples with 75-bp reads from this cohort, we

identified 51 genome clusters present in at least one sample. 27 of these clusters were present in at least 10 samples in both datasets,

and were assayed for KC variation in the new sample set, yielding 6,898 highly or set-specific variable KCs (Table S4). Overall, of the

KCs detected as highly variable in the original dataset, 65% (350/538) were identified as highly variable also in the second dataset and

96% (515/538) were identified as either highly or set-specific variable in the second dataset. Of the KCs detected as set-specific var-

iable in the original dataset, 75% (2710/3591) were identified as either highly or set-specific variable in the second dataset. Within

each genome cluster, an over-representation analysis was performed to identify the functions associated with the set of variable

KCs in each cluster (Table S6), as described in the analysis of the primary dataset in the main text. Examining the overlap in detected

functional classes, 59% (44/74) of the associations reported in themain text for the 27 clusters examinedwere also found to be signif-

icantly associated with copy number variation in the second dataset and this overlap was higher (68%; 17/25) among transport-

related functions. Similarly, 67% (10/15) of the functions associated specifically with highly variable genes were also significantly

associated with highly variable genes in the second dataset. In certain clusters (ie. Bacteriodes ovatus and Roseburia inulinivorans),

functions found to be over-represented among variable KCs were almost identical in the two datasets. These findings suggest that

while the exact pattern of copy number variation may differ between different groups of individuals, certain genes and functions are

universally prone to variation.

Mapping Rates for Metagenomic Reads to Reference Genomes
We mapped a total of 2.47 billion 75bp reads to 260 reference genomes (Table S1). On average, 34.7% of the reads in each sample

could be mapped to a reference genome at an edit distance% 5, although in some samples the mapping rate was as high as 71.5%.

This average mapping rate is comparable to the one observed (31%) in mapping these reads to 194 gut-associated genomes in the

original study that generated these reads (Qin et al., 2010), as well as to mapping rates observed in similar studies (Qin et al., 2012;

Schloissnig et al., 2013). These rates are also not surprising given the complexity of gut-associated communities and the predicted

prevalence of rare and uncharacterized species. Of the mapped reads, an average of 82.6% overlapped a gene coding region (of

which over a third are annotated with a KO), which is in close agreement with the percentage of the total length of gene coding regions

within the genomes in our reference database.
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Figure S1. Validation of Reference Genome Clustering, Related to Figure 2
75 bp reads were simulated from 10 reference genomes, and thenmapped back to a full or partial reference set using BWA (Extended Experimental Procedures).

Each column represents the proportion of reads simulated from a single genome that fell into various mapping categories. In (A) reads were simulated from 10

selected genomes, andmapped to the full set of 260 reference genomes. In (B) reads were subject to a 1.5% sequencing-error model before beingmapped to the

reference genomes, and in (C) reads were subject to the error model and thenmapped to a set of reference genomes in which the genome of origin was removed.

As demonstrated, reads mapped successfully to the genome of origin or to an alternative genome in the same cluster if present, while very few reads mapped to

thewrong cluster, supporting our cluster definitions. In (D) simulatedmapping results as described in panel Cwere summed over all 260 genomes and analyzed at

a range of maximum edit distances. An edit distance of 5 maximized the number of correctly mapped (or correctly unmapped) reads while minimizing the number

of incorrectly mapped reads. The inset shows the most frequent assignments of incorrectly mapped reads for which the correct KC was present in the database

(gray squares: unannotated regions in the correct genome cluster; red squares: correct KO in the wrong genome cluster) or absent from the database (red circles:

correct KO in the wrong genome cluster).
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Figure S2. Genomes and KOs with High Mapping Error Rate, Related to Figure 2
75bp error-adjusted reads were mapped to a set of 260 reference genomes in which the genome of origin was removed (Extended Experimental Procedures; see

also Figure S1C). The percent of reads simulated from each genome (A) or from each KO (C) that were correctly or incorrectly mapped are shown as stacked bars

in each column. Genomes and KOs with a combined error rate (% incorrectly unmapped +% incorrectly mapped) > = 50%were excluded from further analysis.

The portions of panels A and C corresponding to these filtered genomes and KOs are magnified and shown in panels (B) and (D) respectively. Genome labels in

panel B are formatted as genomeID_clusterID[cluster size] (and see Table S1).
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Transfer RNA biogenesis
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Figure S3. Selection of Marker Kos, Related to Figure 1

(A) 13 marker KOs were selected from a list of 40 potential KOs according to three criteria: Universality > 0.95, Alignment Accuracy > 0.90, and Coverage

Consistency > 0.85 and < 1.15 (Extended Experimental Procedures). Selected marker KOs are outlined in black, and listed in (B).
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Figure S4. Analysis of Simulated Reads from Mock Communities, Related to Figure 3

(A) Predicted versus real relative abundances of genome clusters across a set of simulated communities (see Extended Experimental Procedures). Each point

represents a single genome cluster in a single sample, with different clusters represented by different colors. Across all sampled and clusters, the correlation

between predicted and real values was 0.993. (B) The estimated copy number of KCs as a function of the underlying real copy number and the coverage of the

genome cluster. Each boxplots illustrates the distribution of copy number estimates obtained for KCs with a certain real copy number and in clusters with a given

coverage range. Copy number estimation accuracy increased with coverage with an overall accuracy of 87.6%, 95.2%, and 97.8% for clusters with low coverage

(1x-2x), intermediate coverage (2x-5x), and high coverage (> 5x) respectively. Overall, copy number estimation accuracy for detectable clusters (> 1x) was 96%,

compared to only 60.1% for undetectable clusters. (C) Recall of variable KCs as a function of the fraction of samples in which the KC was deleted or duplicated.

The color of each circle represents the proportion of these detected variable KCs that were also identified as highly variable (compared to set-specific variable),

confirming the ability of our pipeline to classify the type of underlying variation.
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Figure S5. Comparison of Set-Specific Variable KCs to Known Variation among Reference Genomes, Related to Figure 4

(A) In each Venn diagram, the gray circle represents the set of all KCs in a given genome cluster, the pink circle represents the fraction of those KCs whose copy

number varies across the cluster’s reference genomes, and the red circle represents the set of set-specific variable KCs detected by our analysis. Overlap of the

pink and red circles indicates correspondence between known and detected variation. Each diagram is labeled with the cluster ID, representative species name,

and number of reference genomes. (B-C) Additional variation in reference genomes that were not used as mapping targets is represented by either an orange

circle (additional reference genomes from IMG) or a yellow circle (additional reference genomes fromNCBI), compared to variation in included reference genomes

(pink) and detected set-specific variable KCs (red).
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Figure S6. Copy Number of Highly Variable Motility KCs in Eubacterium rectale, Related to Figure 5

The size and color of each square represent the copy number of each highly variable KCwithin each sample. Samples are grouped by host state (I: IBD, h: healthy,

o: obese). The copy number of the 13 marker KCs in this genome cluster and across the samples are also illustrated for comparison.
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Figure S7. Principal Coordinate Analysis of Copy-Number Profiles across Samples, Related to Figure 7

Principal coordinate plots are shown for two genome clusters: (A) Eubacterium siraeum and (B) Clostridium sp., depicting differences between the copy number

profiles across samples (open circles) and reference genomes (filled circles).
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