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e A metagenomic data analysis pipeline allows strain-level
gene copy-number inference

e Copy-number variation (CNV) is widespread across many
prevalent human gut species

e CNV involves mostly environment-related functions and is
associated with disease

e Strain-level population structure reveals known and
uncharacterized strains
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In Brief

Extensive strain-level variation is
detected in the human gut microbiome,
with differences in gene copy-number
impacting specific adaptive functions and
linked to obesity and inflammatory bowel
disease.

Cell


mailto:elbo@uw.edu
http://dx.doi.org/10.1016/j.cell.2014.12.038
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cell.2014.12.038&domain=pdf

Extensive Strain-Level Copy-Number Variation
across Human Gut Microbiome Species

Sharon Greenblum,’ Rogan Carr,' and Elhanan Borenstein?-2-3.*
1Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
2Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA

3Santa Fe Institute, Santa Fe, NM 87501, USA
*Correspondence: elbo@uw.edu
http://dx.doi.org/10.1016/j.cell.2014.12.038

SUMMARY

Within each bacterial species, different strains may
vary in the set of genes they encode or in the copy
number of these genes. Yet, taxonomic character-
ization of the human microbiota is often limited to
the species level or to previously sequenced strains,
and accordingly, the prevalence of intra-species
variation, its functional role, and its relation to host
health remain unclear. Here, we present a compre-
hensive large-scale analysis of intra-species copy-
number variation in the gut microbiome, introducing
a rigorous computational pipeline for detecting such
variation directly from shotgun metagenomic data.
We uncover a large set of variable genes in numerous
species and demonstrate that this variation has
significant functional and clinically relevant impli-
cations. We additionally infer intra-species com-
positional profiles, identifying population structure
shifts and the presence of yet uncharacterized vari-
ants. Our results highlight the complex relationship
between microbiome composition and functional
capacity, linking metagenome-level compositional
shifts to strain-level variation.

INTRODUCTION

The human gut microbiome plays an important role in host meta-
bolism, immunity, and drug response and has a tremendous
impact on our health (lida et al., 2013; Kinross et al., 2011; Vi-
jay-Kumar et al., 2010). Numerous comparative studies aiming
to characterize the contribution of the microbiome to human
health have already demonstrated marked shifts in the relative
abundance of various species, genera, or phyla in various dis-
ease states (Frank et al., 2007; Hoffman et al., 2014; Larsen
et al., 2010; Turnbaugh et al., 2009). Clearly, however, each
microbial species represents many different strains that may
encode considerably different sets of genes and a different
number of copies of each gene (reflecting, for example, gene de-
letions and duplication events). Such intra-species variation en-
dows each strain with potentially distinct functional capacities.
Studies of individual isolates of cultured species have indicated,
for example, that strains often differ in virulence (Gill et al., 2005;
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Salama et al., 2000; Solheim et al., 2009), matility (Zunino et al.,
1994), nutrient utilization (Siezen et al., 2010), and drug resis-
tance (Gill et al., 2005). Accordingly, the true functional potential
of a microbiome cannot be inferred from species composition
alone, and species-level comparative analyses may fail to cap-
ture important functional differences across samples. Recent ef-
forts to catalog the relative abundance of known strains in human
microbiome samples (Kraal et al., 2014) may recover some of
these differences but are limited to sequenced reference ge-
nomes and are not able to identify novel, yet-to-be-sequenced
variation. Gene-centric shotgun metagenomic studies, on the
other hand, may identify genes or pathways that are differentially
abundant across samples but cannot necessarily attribute these
shifts to specific species or strains. Specifically, it is often un-
clear how much of the observed variation in gene composition
is due to variation in the abundances of species and how much
is contributed by intra-species variation. Indeed, conflicting re-
sults have been reported, with trends identified among species
profiles that are often poorly translated to gene profiles and
vice versa (Muegge et al., 2011; Turnbaugh et al., 2009). It is
therefore not yet clear how prevalent gene-level intra-species
variation is in the human gut, whether such variation is adaptive
and affects specific functions, and how much of this variation
has already been captured by reference genomes.

Some evidence already suggests that variation among strains
is common in the human gut. Several studies have focused
specifically on nucleotide-level variation, assessing, for example,
the prevalence and stability of single-nucleotide polymorphisms
across numerous metagenomes (Schloissnig et al., 2013) or
the level of sequence diversity across multiple near-complete
genomes from two bacterial species variants obtained by
single-cell sequencing (Fitzsimons et al., 2013). Other studies
have taken steps to associate sequence variation with gene-level
differences, identifying, for example, areas of variable coverage
and the coordinated loss of genes from specific gene families
within the Streptococcus mitis B6 genome (Human Microbiome
Project Consortium, 2012) or a diverse array of strain-specific
adhesion-like protein genes across cultured strains of Meth-
anobrevibacter smithii (Hansen et al., 2011). Additional studies
have used extensive manual genomic reconstruction to track
strain-resolved shifts over time in Actinomycetaceae in the
relatively low-complexity premature infant gut microbiome
(Brown et al., 2013); to detect differences related to antibiotic
resistance, transport, and biofilm formation among three strains
of Staphylococcus epidermis (Sharon et al., 2013); or to identify
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the variable presence of genes involved in transport, motility,
carbohydrate metabolism, and virulence in two distinct strains
of Citrobacter (Morowitz et al., 2011). These gene-level studies,
however, mostly report small-scale or anecdotal results, focusing
on one or a small number of species and often on specific gene
families. A high-throughput, comprehensive analysis of gene-
level variation across a large array of species in the human gut
is therefore needed to more fully appreciate the extent and func-
tional implications of strain variation in this complex microbiome.

To address this challenge, here we establish a rigorous and
robust pipeline to estimate the copy number of each gene in a
large set of prevalent gut microbial species in a given sample
directly from metagenomic shotgun data and, furthermore, to
detect copy-number variation across samples. We carefully cali-
brate this pipeline to confirm that it can successfully estimate the
copy number of individual genes in individual species on a large
scale. Applying this pipeline to 109 metagenomic samples from a
recent study of the gut microbiomes of healthy, obese, and in-
flammatory bowel disease (IBD)-afflicted individuals, we esti-
mate the copy number of more than 4,000 gene groups across
70 species in each of these samples and demonstrate the pres-
ence of widespread copy-number variation within many genes in
many species. We find that specific functions are especially
prone to copy-number variation, including functions relevant to
a community lifestyle and adaptation to the gut environment,
and further detect associations between strain variation and
host phenotype. Finally, we demonstrate that these copy-num-
ber estimates can be used both to model the composition of
known strains within each sample and to offer insight into com-
plex population structures, suggesting the presence of yet un-
characterized species variants.

RESULTS

A Pipeline for Calculating Genomic Copy-Number
Estimates in Metagenomic Samples

We developed a pipeline to confidently detect variation in gene
content and gene copy number in a large set of prevalent human
gut microbes directly from metagenomic data (Figure 1 and
Experimental Procedures). Briefly, this pipeline works as follows.
Shotgun metagenomic short reads were first aligned to a set of
reference genomes representing dominant and prevalent gut
microbiome strains. To account for the potentially multiple ge-
nomes available for each species in this reference database, ge-
nomes were grouped into clusters using a previously introduced
sequence similarity-based method (Schloissnig et al., 2013).
These clusters represent approximate species-level groups,
though in some cases may not reflect classical taxonomic divi-
sions. We used extensive simulations to carefully select align-
ment parameters and confirmed that, with these parameters,
reads mapped to the correct region and correct genome cluster,
whereas reads from genome clusters not represented in our
reference database remained unmapped (Figure 2A; Figure S1;
Extended Experimental Procedures). In parallel, gene coding re-
gions from all reference genomes were annotated with KEGG
orthology groups (KOs). Reference genomes and KOs with low
confidence mapping were identified and excluded (Figure S2;
Extended Experimental Procedures). For each sample, coverage
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across each KO-annotated region in each reference genome
was calculated, and coverage values across regions corre-
sponding to the same KO in the same genome cluster were
summed. We then used the average coverage of 13 single
copy marker genes, carefully selected for their universality, map-
ping accuracy, and coverage consistency (Figure S3; Extended
Experimental Procedures), to convert the calculated coverage of
each KO in each cluster to a copy-number estimate (Experi-
mental Procedures). Overall, this process estimated the copy
number, Vs, of each KO k, in each genome cluster ¢, detected
in each sample s (Figure 1). Notably, copy-number estimates
represent an average across the various genomes associated
with each cluster that are present in the sample and across the
potentially multiple genes associated with each KO. We further
performed an analysis of an extensive synthetic dataset to
confirm that this scheme accurately recovers species abun-
dances and copy-number values (Figures S4A and S4B;
Extended Experimental Procedures).

We applied this pipeline to a dataset of 109 previously collected
gut metagenomic samples from a Danish/Spanish cohort (Qin
et al., 2010), mapping in total >2.45 billion 75 bp reads to 235
reference genomes grouped into 96 genome clusters (Table S1;
Extended Experimental Procedures). The average coverage
across the 13 marker genes (a proxy for the abundance of each
cluster in each sample) varied considerably across clusters and
between samples (Figures 2B and 2C). To limit any downstream
analysis to high-confidence copy-number estimates, we therefore
considered only genome clusters with sufficient coverage in a
sample (which we term “detectable” clusters; Experimental Pro-
cedures). We identified a total of 70 clusters that were detectable
in at least one sample, with an average of 16 detectable clustersin
each sample (Table S2). Overall, this analysis assigned copy num-
ber values to ~1.5 million KO-cluster-sample triplets, estimating
the copy number of thousands of KOs across a large array of
genome clusters in >100 samples (Table S3).

This dataset of copy-number estimates provides a first large-
scale account of gene-level strain variation among organisms
common to the human gut. Below, we mine this dataset to
explore neutral and adaptive variation in this highly complex
ecosystem in a manner that goes beyond species-level com-
parative analysis. Importantly, this dataset and the pipeline
described above can serve as a valuable resource for future
studies of compositional shifts in the human microbiome and
in other environments, linking metagenome-level differences in
gene abundance to genome-level variation.

Identifying Genes with Highly Variable and with
Set-Specific Variable Copy Number

Given the copy-number estimates obtained above, we set out to
identify specific KOs in specific clusters (KO-cluster pairs, or
KCs) whose copy number varied across samples. Notably, to
detect variation, we compared the copy number of each KC
across different samples rather than comparing the estimated
copy number in any given sample to the copy number in a refer-
ence genome, avoiding spurious variation predictions that may
result from annotation errors or bias in the set of reference
genomes. Clearly, many clusters can be detected in only a
few samples. To confidently detect copy-number variation, we
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Figure 1. Schematic of Analysis Pipeline

Reads from metagenomic samples were mapped to KEGG-annotated reference genomes, grouped into species-level genome clusters. The total coverage of
each KO (KEGG orthology group), k, in each genome cluster, ¢, in each sample, s, was normalized by cluster abundance to calculate gene copy number Vjs. KCs
(specific KOs in specific genome clusters) whose copy number varied significantly across samples were detected, as well as those whose copy number was

associated with host state (obesity, IBD).
See also Figure S3 and Table S3.

therefore only considered the 40 clusters that were detectable in
at least 10 samples.

We first set out to identify KCs that exhibit extreme and
prevalent variation across samples. Specifically, we calculated
the level of inter-sample variation in the copy number of each
KC and defined as highly variable those KCs whose variation
was at least two standard deviations greater than the average

variation of all KCs (Experimental Procedures). We used both
cross-validation analysis and synthetic samples to confirm the
robustness and accuracy of this approach (Extended Experi-
mental Procedures; Figure S4C). In total, this analysis detected
735 highly variable KCs spanning 261 KOs across 38 genome
clusters (Figure 3; Table S4). The number of highly variable
KCs in each cluster varied greatly, reaching up to 47 KCs in
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Figure 2. Genome Cluster Statistics

The mappability, abundance, and prevalence of each genome cluster (representing a species-level group) are shown in three vertically aligned plots. Clusters are

sorted by their prevalence across samples.

(A) Cluster mappability, as determined by a large-scale simulation assay measuring the accuracy of mapping reads extracted from the cluster’s genomes to a
database in which the genome of origin was removed. In this simulation, reads from clusters represented in the reference database by a single genome (marked

with a dot above the column) are expected to remain unmapped.

(B) The distribution of each cluster’s abundance across samples, as determined by the average coverage of 13 single-copy marker genes.
(C) Cluster prevalence (the number of samples in which the cluster was “detectable”) within each host group, shown as a stacked bar plot.

See also Figures S1 and S2 and Tables S1 and S2.

the Roseburia intestinalis cluster (representing 4.05% of the KCs
in this cluster), with an average of 1.79% of the KCs in each clus-
ter (Table S5). We found no apparent relationship between the
amount of variation observed in a cluster and the number of
reference genomes in the cluster or the prevalence of the cluster
across samples, but we did observe a tendency toward high
variation in species from the Firmicutes phylum compared to
other species (t test, p < 0.05; see also Figure 3). Although the
majority of highly variable KOs (57.1%) were variable in just
one cluster, certain KOs were variable across many clusters,
with some KOs variable in ten or more different clusters.

The analysis above focused on KCs that exhibit extreme vari-
ation and on KCs that vary greatly across many different samples.

586 Cell 160, 583-594, February 12, 2015 ©2015 Elsevier Inc.

Variation within other genes, however, may be more subtle and
may reflect, for example, adaptive variation that can be observed
in only a small set of samples. We therefore set out to additionally
identify set-specific variable KCs, wherein the copy number of a
given KC was relatively constant across most samples but devi-
ated significantly in a small subset of the samples (Experimental
Procedures). In this analysis, we further distinguished cases in
which a KC exhibited a consistently high copy number in this sub-
set of samples compared to all other samples (set-specific
increased copy number) from cases in which a KC exhibited a
consistently low copy number in this subset of samples (set-spe-
cific decreased copy number) or in which it exhibited increased
copy number in one subset and decreased in another. As
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See also Figure S4 and Tables S4-S6.

expected, we found that set-specific variable KCs were much
more common than highly variable KCs. In total, our analysis de-
tected 5,004 set-specific variable KCs covering 1,859 KOs
across the 40 genome clusters examined (Figure 3; Table S4).
In general, we observed more cases of set-specific increased
copy number than of set-specific decreased copy number, but
this ratio shifted markedly across clusters, and in certain clusters
(i.e., Clostridium sp., Streptococcus thermophilus) mostly set-
specific decreased KCs were observed.

Detected Variation Captures Both Known and Novel
Strain Variation

As validation of our pipeline and results, we compared the set of
highly variable KCs obtained for each cluster to known variation
among the cluster’s sequenced reference genomes. Clearly, the
reference genomes in our database do not capture the full extent
of intra-species variation in the gut microbiome. Similarly, our
samples likely do not include much of the variation present in
our reference genomes, as many of these reference genomes
represent strains isolated from clinically distinct individuals,
phenotypically diverse cohorts, or non-gut samples. Accordingly,
a large number of genes that vary in copy number across refer-
ence genomes may still exhibit consistent copy number across
the gut samples analyzed above. Yet, the set of detected highly
variable genes, which aims to include genes that vary frequently
in their copy number across genomes, is likely to capture many
instances of known variation in gene content among available
reference genomes. Indeed, considering the 15 multiple-genome
clustersin our database, a striking 81% of the detected highly var-

iable KCs also vary in copy number across reference genomes
(Figure 4). Moreover, in seven of these clusters, all highly variable
KCs also vary in copy number across reference genomes.
Notably, six of these clusters contain at least three genomes,
whereas the majority of the other clusters contain only two, sug-
gesting that more sequenced strains may be needed to fully
capture the variation associated with these clusters (and more
importantly, with clusters for which only a single genome was
available). Importantly, we demonstrated that a similar overlap
can be observed when comparing predicted variation to known
variation among a large collection of genomes not included in
our database, confirming that this overlap is not an artifact of
the specific reference genomes used in our analysis (Figures 4B
and 4C; Extended Experimental Procedures). Comparison of
set-specific variable KCs to known variation across reference ge-
nomes again confirmed that the variation detected greatly over-
lapped with known variation observed across sequenced strains
(Figure S5). Notably, however, set-specific variable KCs also
included many instances of novel variation, suggesting that the
set of reference genomes currently available does not capture
the full extent of copy-number variation in the gut. Comparison
of detected set-specific variation to variation observed across
two manually assembled Citrobacter strains further revealed sig-
nificant overlap (Extended Experimental Procedures).

Functions Associated with Variable Genes

We examined whether the detected copy-number variation was
associated with specific functions in each genome cluster. We
first used enrichment analysis to identify functions that were

Cell 160, 583-594, February 12, 2015 ©2015 Elsevier Inc. 587
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(B and C) Additional variation in reference genomes that were not used as mapping targets is represented by either an orange circle (additional reference ge-
nomes from IMG) or a yellow circle (additional reference genomes from NCBI), compared to variation in included reference genomes (pink) and detected highly

variable KCs (red).
See also Figure S5.

over-represented among the set of highly variable KCs in each
cluster. We found that transport-related functions were over-
whelmingly prone to high copy-number variation (Table S6). Spe-
cifically, ten of the genome clusters analyzed were enriched for
variation in KCs associated with transport annotations, including
the general BRITE term “Transporter,” as well as more specific
modules related to either sugar or iron complex transport. For
example, within the Bacteroides ovatus cluster, seven of the clus-
ter’s 66 transport-associated KCs were highly variable (Figure 5),
including all three KCs (K02013, K02015, K02016) involved in a
specific iron complex transport system module (M00240). Inter-
estingly, significant variation in sugar transport functions was
only found among clusters in the phyla Firmicutes and Actino-
bacteria, whereas Bacteroidetes clusters were uniquely associ-
ated with variation in the iron complex transport system (see
Table S6). Studies of cultured organisms from various environ-
ments and experimental evolution assays have suggested that
loss, amplification, and acquisition of transport functions consti-
tute a primary adaptive mechanism (Gevers et al., 2004; Heikki-
nen et al., 2007; Lee and Marx, 2012; Sonti and Roth, 1989);
here, we show that this flexibility in the copy number of transport
genes likely extends to a considerable proportion of prevalent gut
species and that, within this general class, specific transport
genes may facilitate adaptation to the gut environment.

We additionally found that motility-related KCs were highly
variable in the Eubacterium rectale genome cluster. Specifically,
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in this cluster, 7 of the 38 highly variable KCs were bacterial
motility proteins, of which four were structural flagellar compo-
nents, two were involved in chemotaxis, and one was essential
for twitching motility (Han et al., 2008). Motility proteins, and espe-
cially flagellar proteins, are widely associated with virulence and
immunostimulation, and the gain or loss of flagellar components
is believed to be animportant adaptive mechanism (Borziak et al.,
2013; Heikkinen et al., 2007; Al Mamun et al., 1997). Moreover,
variation in these seven KCs was highly consistent within sam-
ples; most samples contained either detectable copies of all
seven KCs or no (or low number of) copies of all of these KCs (Fig-
ure S6). Though we found no variation in the copy number of any
of these genes among the three sequenced reference genomes
included in the Eubacterium rectale cluster in our database, a
recent study of 27 elderly gut metagenomes identified non-uni-
form coverage of genes involved in the flagellum biogenesis path-
ways of six Eubacterium and Roseburia species (Neville et al.,
2013), suggesting that the current reference genomes may not
capture the full dynamic range of these species.

Next, we considered the collection of set-specific variable
KCs and examined their functional annotations. Interestingly, hi-
erarchical clustering of set-specific variable KOs based solely on
their variation profile across the 40 clusters revealed dis-
tinct groups of functionally related genes that vary in a given
genome cluster or within multiple clusters (Figure 3). For
example, a large set of genes related to cell growth and
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sporulation were all identified as set-specific variable KCs in the
two genome clusters associated with Clostridium sp. Similarly, a
set of sugar metabolism genes were all identified as set-specific
variable KCs in Roseburia intestinalis, and a number of antibiotic
resistance genes were identified as variable in multiple genome
clusters, primarily those in the Firmicutes phylum. An enrichment
analysis of functions associated with set-specific variable KCs in
each cluster additionally revealed a number of important func-
tions that were prone to copy-number variation (Table S6). For
example, genes in the lipopolysaccharide biosynthesis pathway
in Dialister invisus and Clostridium sp. were often observed with a
higher copy number in a small set of samples. Interestingly, vari-
ation within functions related to sugar metabolism (i.e., KEGG
pathways galactose metabolism, starch and sucrose meta-
bolism, fructose and mannose metabolism, polyketide sugar
unit biosynthesis) was observed primarily within Bacteroidetes
clusters, whereas set-specific transport-related variation was
almost absent from these clusters. Other functions enriched for
set-specific variable KCs suggest transitions between virulent
states, such as motility in butyrate-producing bacteria (NCBI
accession FP929062), Eubacterium rectale, and Clostridium
sp.; streptomycin biosynthesis in Acidaminococcus sp.; lyso-
syme production in Bacteroides ovatus; the EHEC/EPEC patho-
genicity signature in Escherichia coli; and secretion systems
in butyrate-producing bacteria (NCBI accession FP929062),
Clostridium sp., and Escherichia coli. Within Escherichia coli,
type Il secretion system genes were identified as set-specific
decreased copy-number KCs, whereas type lll secretion system
genes were identified as set-specific increased copy-number
KCs. Overall, much of the observed variation appeared to be
associated with the way a species responds to and interacts
with its surroundings, highlighting the strong adaptive potential
of gut-associated bacteria.

Clearly, different cohorts could harbor different sets of strains
owing to an assortment of ecological or host-specific factors,
and accordingly different genes may vary in copy number in

different datasets. Notably, however, analysis of a second data-
set of 73 gut samples from a Chinese cohort (Qin et al., 2012)
yielded a marked overlap with our original Danish/Spanish
cohort in both the set of KCs identified as variable and
the set of functions enriched for copy-number variation
(Extended Experimental Procedures). These findings suggest
that, although variation may be personal, certain genes and func-
tions (e.g., those related to environmental adaptation) may be
universally prone to variation.

Host State-Associated Variation

Although much of the variation across strains may reflect neutral
processes or transitory dynamics, some variation may repre-
sent adaptation to a specific host phenotype. To detect such
potentially adaptive variation, we identified variable KCs in which
the copy number in samples from obese or IBD subjects was
significantly different than in samples from healthy subjects
(Experimental Procedures). In total, we found 24 KCs whose
copy number was significantly associated with IBD and three
KCs whose copy number was significantly associated with
obesity (FDR < 0.05; Table S7).

Interestingly, a number of these KCs have been previously
implicated in adverse host health states. For example, in our
analysis, obesity was associated with a higher copy number of
thioredoxin 1 (K03671) in Clostridium sp. (Figure 6A), and indeed
thioredoxin reductase was recently shown to be enriched in the
cecal metaproteome of mice fed a high-fat diet (Daniel et al.,
2014). Such results are consistent with thioredoxin’s regulatory
role in maintaining redox equilibrium and the demonstrated
links between a high-fat diet and oxidative stress in mammals
(Furukawa et al., 2004). Additionally, in our analysis, the loss of
a ubiquinone-reducing gene (K00349; nqrD) from Bacteroides
plebeius was associated with obesity. A recent study in mice
showed that supplemental ubiquinone reduced inflammation
and metabolic stress accompanying a high-fat high-fructose
diet by reducing the expression of certain genes associated
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Figure 6. Copy-Number Variation of Host State-Associated KCs

Two KCs whose copy number was significantly increased in samples from a specific host state are shown. The size and color of each square represent the copy

number of the KC within each sample.

(A) The copy number of thioredoxin 1 (K03671) in Clostridium sp. is significantly increased in samples from obese subjects.
(B) The copy number of an MFS transporter gene (K08217) in the Roseburia inulinivorans genome cluster is significantly increased in samples from IBD subjects.

See also Table S7.

with stress-response (Sohet et al., 2009), while mice not
receiving the supplement gained more weight than their counter-
parts. Importantly, however, ubiquinol, the reduced form of
ubiquinone, has recently been shown to be the more readily ab-
sorbed and more active form of the compound (Langsjoen and
Langsjoen, 2014), raising the possibility that loss of microbial
ubiquinone-reducing capabilities from certain species may hind-
er the effectiveness and protective capacity of ubiquinone in the
host. Other findings shed new light on the role of individual spe-
cies in disease, with evidence of variation associated with com-
mon disease hallmarks, such as pathogenicity-related secretion
and antibiotic resistance. In Roseburia inulinivorans (Figure 6B),
increased copy number of a gene (K08217) coding for a major
drug efflux protein known to play a role in antibiotic resistance
was highly associated with IBD-afflicted individuals. Similarly,
HlyD (K01993), an essential component of RTX hemolytic toxin
secretion (Pimenta et al., 2005), exhibited increased copy num-
ber in IBD samples in Bacteroides uniformis. See Table S7 for
a full list of disease-associated KCs. Interestingly, none of the
obesity-associated KCs and only 3 of the 24 IBD-associated
KCs were found to vary significantly in the Chinese cohort
described above, among whom only one individual was obese
and none were reported as having IBD.
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Strain-Level Deconvolution of Microbiome Composition
and Intra-Species Population Structure

Clearly, the microbiomes of different individuals can house
multiple strains of the same species with potentially different
relative abundances. Our copy-number estimates for each clus-
ter accordingly represent average copy numbers across the
different strains in the sample. Next, we therefore examined
whether these estimates can be used to obtain insights into
strain-level population structure, going beyond species-level
composition assays and focusing specifically on the composi-
tion of strains within each genome cluster rather than on the
abundance of the cluster itself.

First, we explored how well the copy-number profiles obtained
for each genome cluster in each sample can be explained by
known reference strains, using a regression analysis to decon-
volve these copy-number profiles into a linear combination of
the strains included in our database (Experimental Procedures).
Obviously, these strains may not encompass the full set of
strains present in the samples analyzed, yet such an analysis
may be useful in examining what portion of the observed varia-
tion can be accounted for by known strains and what portion
represents potentially novel variation. Indeed, we found that, in
well-characterized clusters with many sequenced genomes,
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See also Figure S7.

the copy-number profiles of most samples could be well ex-
plained by a linear combination of known strains. For example,
in the Escherichia coli cluster that comprised 63 sequenced
genomes in our database, 76% of the variation in copy number
could be explained on average by these genomes (R? = 0.76 +
0.12). In this cluster, the inferred representation of each strain
differed widely across samples, with some strains (i.e., Escheri-
chia coli O111:H- str. 11128) highly represented across multiple
samples and others found in just one sample. However, for less
well-characterized clusters with only a few known strains in our
database, in some cases just a subset of the observed copy-
number variation could be explained. For example, the four
known strains of Streptococcus thermophilus could be used to
explain a majority of the variation observed in some of the sam-
ples (R2 > 0.5) yet failed to explain the variation observed in four
of the samples (R? < 0), suggesting the existence of potentially
novel, yet-to-be-sequenced variation (Figure 7A).

To further compare copy-number variation profiles across
samples and to examine variation that may not be captured by
known strains (including notably, in clusters comprising only
one known strain), we used a principal coordinate analysis.
This analysis revealed a complex population structure within
each cluster, with marked differences among samples indi-
cating the prevalence of personalized variation. For a number
of genome clusters, however, samples appear to group into
distinct sets, potentially reflecting individuals with similar
intra-species population structures (Figure 7B). Moreover, by
including the reference genomes in this principal coordinate
analysis, we were able to distinguish previously captured

variation versus novel variation observed across samples. For
example, the principal coordinate plot for the Streptococcus
thermophilus genome cluster (Figure 7B) clearly demonstrates
that, although the copy-number profiles of most samples clus-
tered tightly with several known reference genomes, the four
poorly explained samples mentioned above clustered together
and contained variation that was distinct from any reference
genome. Such a pattern may indicate the presence of novel
shared strains, providing a promising basis for targeted seg-
uencing. Similar patterns were also observed in other clusters,
in which a distinct, tightly clustered subset of samples or individ-
ual samples exhibit markedly different copy-number profile from
that of any sequenced genome (Figures S7A and S7B). Overall
though, each genome cluster exhibited a unique population
structure across individuals, highlighting the complex suite of
forces governing taxonomic composition in the gut (Levy and
Borenstein, 2013).

DISCUSSION

By and large, closely related organisms tend to encode similar
sets of genes. This consistency is in fact often used to infer func-
tional capacity from taxonomy (Langille et al., 2013; Zaneveld
et al., 2010). Clearly, however, this relationship between phylog-
eny and gene content is imperfect, and each species represents
a large collection of strains that differ in the set of genes they
encode, the copy number of these genes, and ultimately, their
functional capacity. Above, we have focused on identifying in-
stances in which this relationship between microbial species

Cell 160, 583-594, February 12, 2015 ©2015 Elsevier Inc. 591



and genes breaks, presenting a large-scale analysis of copy-
number variation in a diverse array of gut species. Our analysis
has demonstrated that copy-number variation is prevalent in
the gut environment, with some species exhibiting significant
copy-number variation in >20% of their genes. Such variation
may induce significant microbiome-wide shifts and may account
for at least some of the observed discrepancies between trends
observed at the species levels versus trends measured at the
gene level. Moreover, intra-species variation was shown to be
especially prevalent in genes involved in specific functions,
most notably functions that impact the way an organism inter-
acts with its environment such as transport and signaling pro-
cesses. This may suggest an adaptive dynamic by which certain
species respond to changes in community composition or in the
gut niche and a potentially crucial role of the gut environment
in shaping bacterial evolution (Levy and Borenstein, 2013;
Shapiro et al., 2012). Other highly variable functions, such as
lipopolysaccharide biosynthesis, cell motility, and secretion sys-
tems, may represent changes in virulence as organisms respond
to host immune responses. Interestingly, many of these same
functions were highlighted in a previous study as more difficult
to accurately correlate with 16s data (Langille et al., 2013). Our
analysis further identified variable functions that may correlate
with host states, exhibiting differential copy number in specific
genomes. It remains unclear, however, whether such host
state-associated variation is a cause or an effect. Our framework
additionally facilitated the inference of intra-species population
profiles for each individual, suggesting that most individuals har-
bor multiple strains of each species.

Though still far from an exhaustive catalog of strains that may
be present across all human gut microbiomes, the framework
presented above represents the most comprehensive account
of copy-number variation in the human gut microbiome to
date. It is our hope that this framework and the results presented
here will inform future studies of strain-level microbiome compo-
sition, demonstrating the extent of functional information that is
lost by limiting characterization to the level of species and
prompting further investigation and sequencing of strain-level
features. Yet, there are clearly a number of caveats that should
be considered in designing such future efforts. First, our analysis
is limited to the detection of variation in gut species for which at
least one fully sequenced genome is available, and future studies
may benefit from additional genomes. Notably though, we did
not detect significantly more variation in clusters for which
more reference genomes were available. In addition, our pipe-
line was designed to detect gene losses or amplifications but
cannot identify gain of genes that are not present in any of the
reference genomes included in the genome cluster. Such gain
or transfer events may represent an additional substantial source
of intra-species variation (Smillie et al., 2011). Our framework
could, however, further facilitate future efforts to study sequence
divergence among duplicated genes, informing our view of neo-
functionalization and conservation processes in the microbiome.
Notably, in our analysis, we focused on detecting high-confi-
dence instances of variation, applying conservative parameters
for read alignment and for variability calling. Specifically, we limit
our analysis to “detectable” genome clusters, defined as those
with >1x coverage in the sample. Our analysis of a synthetic da-
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taset confirmed that, in such clusters, copy-number estimates
can be inferred with 96% accuracy but that prediction accuracy
dropped significantly in genome clusters with lower coverage
(Figure S4B and Extended Experimental Procedures). With 13
million reads per sample (the lowest sequencing depth in the
cohort analyzed), species that comprise >0.4% of the sample
are likely to be considered detectable by our pipeline (while a
higher sequencing depth of a sample will clearly allow analysis
of even rarer species). Future studies may relax some of these
parameters or incorporate additional information (e.g., gene
conservation) to detect more subtle variation. Finally, as with
most studies relating microbiome composition to function, our
analysis relies on the availability of functional gene databases,
which may contain incomplete or erroneous annotations. By
considering variation across samples rather than variation from
reference genomes, our analysis is largely robust to such anno-
tation inaccuracies. Interestingly, however, variable KCs identi-
fied by our analysis were much more likely to lack a functional
annotation than non-variable KCs, suggesting that much of the
detected variation in gene content has as yet uncharacterized
consequences. Combined, these results highlight both the
need for additional genome sequences and the importance of
continued efforts for characterizing gene function.

Ultimately, analysis of intra-species variation in microbial com-
munities is crucial for understanding the complex relationship
between species composition and community-level functional
capacity. Our analysis, quantifiably characterizing such variation
in the gut microbiome, is an important first step in this direction,
and the resulting dataset provides an essential resource for
future predictive studies.

EXPERIMENTAL PROCEDURES

Metagenomic Samples and Reference Genomes

Gut metagenomic data for 109 Danish and Spanish individuals, including indi-
viduals afflicted with obesity or IBD, was obtained from (Qin et al., 2010). A list
of 261 dominant and prevalent human gut microbial strains, grouped into 101
genome clusters (Table S1) based on sequence similarity of 40 marker genes,
was obtained from (Schloissnig et al., 2013). Nucleotide contig sequences,
gene calls, and amino acid protein sequences were downloaded for each
genome, and protein sequences were annotated with KEGG orthologous
groups (KOs). See Extended Experimental Procedures for more details.

Calculation of Copy-Number Estimates

Shotgun metagenomic reads were aligned to the set of reference genomes
with BWA, using parameters and filters carefully validated by extensive simu-
lation analyses (Figures S1 and S2; Extended Experimental Procedures). In
total, 2,469,102,286 reads were mapped. Average coverage over each gene
region was determined using samtools (Li et al., 2009), and the coverage of
each KC (KO-cluster pair) was obtained by summing over all genes annotated
with the same KO and genome cluster. KC coverage was normalized by cluster
abundance, defined as the average coverage over a set of 13 universal marker
KOs (Figure S3B; Extended Experimental Procedures), to obtain the estimated
copy number Vs of each KO k, in each cluster ¢, and in each sample s.
“Detectable KCs” in a sample were defined as those with Vs > =0.5. “Detect-
able clusters” within each sample were defined as those with at least 12
detectable marker KCs and average marker coverage >1. KCs that were
not detectable in any sample were removed from the analysis.

Detection of Highly Variable and Set-Specific Variable KCs
For each of the 40,088 KCs present in clusters detectable in at least ten sam-
ples, the median copy number (baseline) across samples and the MAD



(median absolute deviation) from this baseline were calculated. KCs with a
MAD more than 2 SDs from the MAD distribution mean (MAD > 0.6346)
were considered highly variable. KCs in which at least 10% of samples had
a copy number that exceeded the baseline by this threshold were considered
set-specific increased variable KCs. Set-specific decreased KCs were similarly
defined as KCs in which at least 10% of samples had a copy number that fell
below the baseline by this threshold.

Detection of Host State-Associated KCs

A KC was defined as obesity associated if the copy numbers in samples from
obese individuals were significantly higher or significantly lower than the copy
numbers in samples from non-obese individuals, according to a two-sample
t test (FDR-corrected p < 0.05). IBD-associated KCs were similarly defined.
Samples that were labeled as both obese and IBD were omitted from this
analysis.

Copy-Number Profile Deconvolution and Principal Coordinate
Analysis

For each sample, a non-negative least-squares linear regression analysis was
performed to obtain the linear combination of reference genomes in each
multi-genome cluster, optimally explaining the copy-number estimates of
variable KCs. The regression was constrained such that the sum of genome
weights for each sample and cluster equaled one. Prediction error was defined
as the R? value for each sample. A principal coordinate analysis was also per-
formed for every genome cluster, operating on the pairwise Euclidian distance
matrix of set-specific variable KC copy numbers in each sample and each
sequenced reference genome.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven
figures, and seven tables and can be found with this article online at http://dx.
doi.org/10.1016/j.cell.2014.12.038.
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EXTENDED EXPERIMENTAL PROCEDURES

Metagenomic Samples

Metagenomic data were obtained from (Qin et al., 2010), a study characterizing the gut microbiome of Danish and Spanish individ-
uals, including individuals afflicted with obesity or IBD. lllumina-derived shotgun reads (75bp) from 109 samples were downloaded
from the DDBJ ftp site (Kodama et al., 2012) at ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/fastg/ERAO00/ERA000116/ (Table S2).
Additional samples from this study sequenced with 44bp reads were not included in our analysis. A second dataset, including 73
samples from a Chinese cohort was obtained from (Qin et al., 2012).

Reference Genomes and Annotation

A list of 261 dominant and prevalent human gut microbial strains was obtained from (Schloissnig et al., 2013). Reference genomes
with corresponding taxon IDs were downloaded from NCBI's GenBank when present, or from NCBI’s draft genome submissions.
One genome was not present in either and was omitted from further analysis (Salmonella enterica subsp. enterica serovar Paratyphi
B, taxonID: 272994). Nucleotide contig sequences, gene calls, and amino acid protein sequences were downloaded for each
genome, and protein sequences were annotated with KEGG orthologous groups (KOs) using BLASTp against KEGG v. 8/6/2012
limited to prokaryote peptide sequences. Proteins with multiple best hits were annotated with all best hits, weighted by the number
of hits for each KO.

Alignment of Reads to Reference Sequences

Shotgun short reads from the 109 metagenomic samples were aligned to the 260 reference genomes using BWA. Extensive simu-
lations were performed to determine appropriate mapping parameters and identify reliable mapping targets (see sections below).
Each read was mapped to the reference sequence(s) with the smallest edit distance, weighted by the number of tied hits. Reads
with an edit distance > 5, or reads mapping equally to more than 75 regions were considered unmapped. In total, 2,469,102,286
reads were mapped to one or more reference genomes with these parameters.

Evaluating Reference Genome Cluster Definitions and Read Mappability

The 260 reference genomes were assigned to 101 clusters, according to sequence similarity of 40 marker genes (Schloissnig et al.,
2013). The clustering was performed in a previous study, with clusters serving as a proxy for species and individual genomes within a
cluster representing instances of intra-species genomic variation. Clusters ranged in size; many clusters contained just one genome,
while the largest cluster contained 63 genomes (Table S1). Clusters could contain genomes from a single taxonomic clade or several
clades, though most clusters agreed with current species definitions.

To validate that these clusters were suitable for our mapping pipeline, we performed multiple simulation-based analyses. Spe-
cifically, we aimed to examine whether short reads that originate from a given genome and a given gene map to the correct
genome cluster and to the correct KO. Notably, such reads are not necessarily required to map solely to the genome from which
they originated (as this genome will often not be available in the reference genomes database) nor to the exact gene they origi-
nated from. Rather, reads should map to some genome (or genomes) from the same cluster, and to gene regions with the same
KO annotation. Moreover, for our pipeline to correctly estimate gene copy numbers, mapping should also be robust to sequencing
errors and should correctly exclude reads originating from genomes not represented by any of the clusters included in our
analysis.

To this end, custom perl scripts were used to simulate reads by extracting randomly selected stretches of 75 base pairs from the
KO-annotated gene regions of 10 query genomes from 8 different genome clusters (Bifidobacterium longum NCC2705, Strepto-
coccus mitis B6, Bacteroides ovatus ATCC 8483, Bacteroides vulgatus ATCC 8482, Escherichia coli SMS-3-5, Alistipes putredinis
DSM 17216, Citrobacter youngae ATCC 29220, Eubacterium rectale ATCC 33656, Prevotella copri DSM 18205, Bacteroides vulgatus
PC510). Simulated reads were then aligned concurrently to the set of reference genomes, with a maximum allowable edit distance of
5 and up to 75 tied best alignments reported (see also next section, “Validating maximum edit distance for read alignment”). Align-
ment results were parsed to bin each read according to the cluster and KO from which the read originated (query KC) and the cluster
and KO to which it mapped best. Specifically, reads could be unmapped, mapped to > 75 different regions, mapped to a genome
from the correct cluster or mapped to a genome from an incorrect cluster, and reads could be mapped to a region associated with the
correct KO, an incorrect KO, an unannotated gene region, or an intergenic region. Reads mapping to multiple regions were given
fractional counts distributed evenly across the set of corresponding KCs. For regions with multiple annotations, if any of the query
KOs matched any of the target KOs, the target was considered to be the ‘right KO'.

We first mapped 45,855 simulated KO-annotated reads from the 10 query genomes above to the full set of 260 reference genomes
(which includes the 10 query genomes). As expected, each read correctly mapped to the genomic region from which it originated.
Clearly, however, many reads mapped equally well to other regions. When distributing read counts across all tied alignments as
described above, we found that 62.1% of fractional counts were assigned to the correct KO in the original genome, 36.2% were as-
signed to the correct KO in a different genome from the same cluster, and only 1.7% of fractional counts were incorrectly assigned
(Figure S1A); 0.4% were assigned to the wrong cluster, while 1.3% were not assigned to any cluster (either because the aligned re-
gion was intergenic or unannotated, or the read mapped to > 75 regions). This finding suggests that the cluster definitions and
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parameters used allow reads to map uniquely to the genome of origin or to an identical region from another genome in the same
genome cluster, and that such identical regions are only rarely found in another genome cluster.

To assess the effect of short-read sequencing errors, we next applied a position-dependent error profile created with Ibis (Kircher
et al., 2009) from an lllumina sequencing run, uniformly magnified with custom perl scripts to achieve 1.5% error rate. These error-
adjusted reads were then aligned to the set of 260 reference genomes, as above. Evidently, the addition of an error model did not
markedly change the mapping accuracy observed above (and none of the read mapping statistics reported above changed by
more than 1%; Figure S1B). Again, relatively few reads remained unmapped (e.g., reads assigned to the ‘no cluster’ bin, which
may now also include reads that were unmapped due to sequencing errors), and reads from each genome were still far more likely
to be aligned to regions within the correct genome cluster rather than regions in another genome cluster.

As noted above, a primary assumption of our read alignment pipeline is that reads from a strain which would group with one of the
clusters in our database but for which a reference genome is not yet available, will still map to a reference genome within the correct
cluster. This allows us to detect novel intra-cluster variation at regions of altered coverage. We further assume that such reads will
map to regions from the same orthologous group of genes, as defined by KEGG (KOs). To validate these assumptions, we re-aligned
the error-adjusted reads from the above simulation to the reference database, but now, when aligning each read, we removed the
genome of origin from the database. Overall, we found that among reads for which the query KC was present in the database, 66.8%
of fractional counts were correctly mapped to the same KC as the query, while 20.8% were incorrectly unmapped, and only 0.8%
were mapped to the wrong KC (Figure S1C). In some cases however, removing the genome of origin resulted in a reference database
in which the correct KC was no longer present — either because the removed genome was the only one in the cluster, or because no
other genome in the cluster contained the KO. In these cases, we defined an unmapped read as ‘correctly unmapped’, while a read
mapping to any other KC was defined as ‘incorrectly mapped’. Among reads for which the query KC was no longer present, 98.9%
were correctly unmapped, and 1.1% were mapped to another KC. These findings indicate that the specificity of our pipeline is high;
even when the genome of origin was removed from the database, reads mostly aligned to the query KC when it was present, and were
almost always unmapped when it was not. Notably, a significant number of reads remained unmapped at a maximum edit distance of
5 when a correct KC was present. However, most of these reads came from 2 specific genomes, while the false negative rate in the
other 8 genomes was very low. As noted below, we address extreme cases of genomes with consistently false mapping by filtering
the set of reference genomes and removing genomes with high mapping error rates.

To determine whether these trends hold true on a more global scale, below we additionally examined simulated reads from all 260
reference genomes (see ‘Determining mapping error rates and filtering clusters and KOs’).

Validating Maximum Edit Distance for Read Alignment

Since edit distance was used as the primary threshold for short read alignments, we additionally performed a simulation-based anal-
ysis to confirm that a maximum edit distance (MED) of 5 would allow reads to be aligned uniquely to the correct KC, while minimizing
both the number of unmapped reads and incorrectly mapped reads. For this simulation, we again mapped the error-adjusted reads
simulated from all 260 genomes to a reference database in which the genome of origin had been removed as described above, but
this time allowed best alignments at arange of MEDs from 0 to 10. We then examined changes in mapping accuracy over this range of
MEDs (Figure S1D). We found that at all MEDs greater than 0, the majority of reads were either correctly mapped or correctly un-
mapped (ie., when the query KC was no longer in the reference database). The number of correctly mapped reads increased rapidly
from a MED of 0 to a MED of 5, and remained relatively stable at higher MEDs. Notably, the number of incorrectly mapped reads
continued to increase over the entire range of MEDs tested, suggesting that a MED much higher than 5 should not be used. Among
reads for which the KC was present, the major source of erroneous mappings was to unannotated regions in the correct cluster (Fig-
ure S1D-inset). This may imply that the correct KO in fact exists in this cluster, but has not been correctly annotated as a gene, or has
perhaps lost its functionality and become a pseudogene. Though these mapping errors stabilized at MEDs > 5, the rate of incorrect
mappings to the right KO in the wrong cluster continued to increase both for reads for which the KC was present in the database, as
well as those for which it was absent. In light of the above analysis, a MED of 5 was used in the alignment of all sample data to the 260
reference genomes.

Determining Mapping Error Rates and Filtering Reference Genomes and KOs

To confirm that the mapping accuracy observed above for the 10 query genomes and the mapping parameters optimized in the pre-
vious section for the read alignment pipeline apply on a more global scale, we simulated reads from all 260 reference genomes and
repeated the analysis described above. We found that the majority of reads still mapped to the correct KC when it was present in the
database (65.1%), and correctly remained unmapped when it was not (23.1%), with a total error rate (incorrectly mapped + incor-
rectly unmapped) of only 11.8%.

To further improve the accuracy of our pipeline, we additionally examined whether there were a small number of genomes or KOs
which were especially prone to incorrect mapping and that contributed disproportionally to observed inaccuracies, potentially due to
various evolutionary and technical factors. We therefore assessed the accuracy of our pipeline for each of the 260 genomes (Fig-
ure S2A) and each of the 4,304 KOs from which at least 100 reads had been simulated (Figure S2C). Specifically, we used the sim-
ulations described above and calculated a mapping error rate for each genome and each KO, defined as the percent of simulated
reads originating from the KO or genome that were incorrectly unmapped or incorrectly mapped. We identified 25 genomes with error
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rates > 40% (Figure S2B). Excluding these genomes from our analysis, we find that the overall genome-wide error rate is reduced by
nearly half; among the remaining set of 235 genomes, 68.7% of reads were correctly mapped, while 25.1% of reads were correctly
unmapped, and only 6.2% of reads were incorrect (1.4% incorrectly mapped; 4.8% incorrectly unmapped). The rest of the analysis
was carried out with this filtered set of 235 genomes, corresponding to 96 clusters. Error rates for the KOs varied greatly, however the
vast majority (4,272 KOs) had an error rate < 50%. Most of these errors were due to incorrectly unmapped reads and only 8.5% of
KOs had any incorrectly mapped reads. These errors could conceivably be due to either misannotation or low intra-species sequence
conservation, among other factors. For the rest of our analysis, we focused only on KOs with a combined error rate < 50%, excluding
the 35 KOs with a higher error rate (Figure S2D).

Identifying and Validating Marker KOs

We set out to identify a set of marker KOs whose coverage could be used as a proxy for the abundance of each genome cluster in
each sample. Ideally, each of these KOs would be present in exactly one copy in each reference genome (high universality), would
have a low mapping error rate in our simulated alignments (high alignment accuracy), and would have consistent relative coverage by
reads from any given metagenomic sample (high coverage consistency). We accordingly obtained the set of 40 marker COGs used
by Schloissnig et al. (Schloissnig et al., 2013), translated COG annotations to KO annotations using a KEGG-generated mapping file
(http://www.genome.jp/files/ko2cog.xl), and filtered the associated KOs to a smaller set based on the three criteria described above.
Specifically, we defined universality as the percent of reference genomes (out of 260) in which the KO had a copy number > =1. We
defined alignment accuracy as 1 minus the KO mapping error rate (see Determining mapping error rates and filtering genomes and
KOs, above). To assess coverage consistency, we first summed the coverage of each KO in each sample across all clusters, normal-
ized by the mean within each sample, and recorded the distance between these values and 1. For each KO, coverage consistency
was defined as 1 minus the average across all samples. We filtered the 40 KOs to identify those with universality > 0.95, alignment
accuracy > 0.9, and coverage consistency > 0.85 (Figure S3A). 13 KOs met all three criteria (Figure S3B) and were used in the final
analysis as marker KOs for calculation of cluster abundance (see Experimental Procedures).

Comparison of Highly Variable and Set-Specific Variable KCs to Known Strain Variation

To verify our data processing pipeline, we examined the overlap between KCs identified as variable across samples by our analysis
and KCs that vary in copy number across reference genomes in our database. As described in the main text, overall, this overlap was
very high (80.9% for highly variable KCs, 70.4% for set-specific variable KCs). To ensure however that this high overlap was not due
to some detection bias stemming from the use of these reference genomes in our pipeline, we wished to confirm that a similar overlap
can also be observed when comparing our predicted variation to variation found between genomes not included in our database.

We therefore first identified three single-genome clusters - cluster 22 (Dorea longicatena), cluster 23 (Ruminococcus lactaris), and
cluster 34 (Dorea formicigenerans) — each of which could be associated with an additional annotated reference genome from IMG
(Markowitz et al., 2012) representing a different strain from this cluster (Dorea longicatena AGR2136, Dorea formicigenerans
4_6_53AFAA, Ruminococcus lactaris CC59_002D). These ‘new’ genomes were not included in our reference database and were
therefore not used as targets in the read alignment process. For consistency, we downloaded from IMG the KO annotations for
both the ‘new’ genomes and for the three corresponding ‘reference’ genomes already in our database, and limited our analysis to
KCs for which IMG annotations for the reference genomes agreed with the annotations in our database. We also examined 44
newly-sequenced reference strains from the NCBI database that were sequenced after our initial analysis, and were therefore not
included in the original alignment and annotation pipeline. We annotated each of these additional genomes using the same KEGG
BLAST pipeline as with the main reference set (see Experimental Procedures).

We compared the KCs identified as variable by our analysis with KCs that vary in copy number between the reference genomes
used for mapping and the newly obtained genomes from either IMG or NCBI. Examining the variation present in the IMG genomes, we
find high overlap with detected variable KCs, with 71%, 64%, and 39% of the KCs that were identified as highly variable across sam-
ples by our analysis in clusters 22, 34 and 23 respectively corresponding to KCs that vary in copy number between the reference
genome and the new genome (Figure 4B). Importantly, these values are comparable to the overlap observed in the 4 genomes clus-
ters in our database in which two reference genomes were included as alignment targets (mean 63%), suggesting that variation de-
tected by our pipeline was not unduly influenced by the specific strains used as references during read alignment. When examining
set-specific variable KCs, this overlap was still high (47 %, 45%, and 28% for the three clusters respectively), yet as demonstrated for
other clusters, identified variable KCs further included many instances of novel variation (Figure S5B). Examining the additional ge-
nomes from NCBI (Figures 4C and S5C) we find 302 instances in which copy number variation detected in our samples (including 39
highly variable KCs and 263 set-specific variable KCs) was reflected in copy number differences in these additional sequenced refer-
ence genomes. In the two cases in which additional genomes were examined for clusters that originally were represented by only a
single reference, over 70% of the detected highly variable KCs, and close to 60% of set-specific variable KCs exhibited copy number
differences between the original and additional genome.

As additional validation, we compared our results to specific instances of known copy number variation detected across two
manually assembled genomes representing distinct strains of Citrobacter found in the deeply sequenced gut microbiome of a pre-
mature infant (Morowitz et al., 2011), and observed a significant overlap in the sets of variable genes. Specifically, functional differ-
ences between the known strains included the presence or absence of fimbrial genes and genes involved in phenylacetate
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degradation. Within our dataset, we found that 13 of the 14 phenylacetate degradation KCs in the genome cluster containing Citro-
bacter genomes, and 7 of the 12 fimbrial KCs were identified as set-specific variable KCs. While it is not expected that our samples,
obtained from European adults, would necessarily harbor the same strains found in a single premature infant, the similarities in the
types of functions that are subject to increased or decreased copy numbers are intriguing.

Cross-Validation of Variable KCs

To examine the robustness and sensitivity of our pipeline, we performed a cross-validation analysis, testing whether significantly high
variation detected using a subset of our samples is predictive of variation observed in the remaining non-overlapping subset of sam-
ples. We focused on the 30 genome clusters that were identified as present in at least 20 samples. For each cluster, the samples
containing this cluster were randomly divided into 5 equally populated cross-validation groups. For each cluster we then performed
5 rounds of highly variable KC detection (as defined by our pipeline), each time leaving out a different sample group (testing set) and
detecting variation only based on the remaining 4 groups combined (training set). We then examined whether KCs detected as highly
variable in the training set also exhibited significantly higher variation among samples in the testing set by comparing the median
absolute deviation of these genes to the median absolute deviation of KCs not detected as variable and using a t test to assess sig-
nificance. We found that across all rounds of cross-validation and in each of the 30 clusters tested, genes detected as highly variable
in the training set indeed exhibited higher variation in the testing set, confirming the robustness of our pipeline and demonstrating that
high variability observed in the copy number of certain genes is not merely due to some extreme (and potentially spurious) variation in
just one or a few samples.

Mock Community Simulation and Analysis

To assess the accuracy of our pipeline and the resolution of our variable KC detection scheme, we created a synthetic dataset of
metagenomic samples in which cluster abundances and KC copy numbers were known a priori. Specifically, expanding on the simu-
lation procedure described in (Carr and Borenstein, 2014), we generated 40 simulated samples, each of which consisted of 13 million
75-bp reads (comparable to the sample with the lowest sequencing depth in the Danish/Spanish cohort analyzed in our study) ex-
tracted at random from a sample-specific community of reference genomes. To generate these samples, 50 reference genomes from
50 different clusters (minimizing confounding variation) were chosen at random to be included in the simulation. For each sample, the
community was constructed by randomly assigning a relative abundance (up to 25 fold variation) to each of the 50 reference ge-
nomes. We introduced gene-level variation by deleting or duplicating a subset of 50 + 35 randomly selected genes in each genome,
using a probabilistic model that assigned randomly chosen gain and loss rates to each of these genes. 75-bp regions were then ex-
tracted from this simulated community of genomes, and subject to a 1.5% sequencing error model (see (Carr and Borenstein, 2014)
for more details). We then used our framework to analyze these simulated samples, aligning simulated reads to the original set of 260
reference genomes, calculating species abundances and KC copy numbers as defined by our pipeline, and calling copy number
variation.

We compared the obtained species abundances, copy nhumber estimates, and predicted sets of variable KCs to the parameters
used to generate the simulated samples in order to quantify the accuracy of our pipeline and its ability to recover species and gene
features. As demonstrated in Figure S4A, species abundance prediction was extremely accurate with a correlation of 0.993 (p <
1073%: Pearson correlation test) between predicted and real relative abundance values across the 40 simulated communities and
50 species analyzed, confirming our marker genes-based approach for inferring community composition. Similarly, we confirmed
that our copy number estimates correctly recover the copy number of each gene in each genome cluster (Figure S4B). Copy number
estimation accuracy increased with coverage, from 87.6% for genome clusters with low coverage (1x-2x), to 97.8% for clusters with
higher coverage (> 5x). Estimation accuracy also depended on the underlying copy number, with low copy numbers predicted more
accurately than high copy numbers. Overall, the copy number of 96% of KCSs were correctly predicted in ‘detectable’ genome clus-
ters (coverage > 1x as defined by our pipeline). Importantly, overall estimation accuracy dropped to 60.1% for undetectable clusters
(coverage < 1x), justifying our decision to remove such clusters from downstream analysis. We further examined how many of the
KCs in which variation was introduced when simulating the samples were identified as variable by our pipeline. Overall accuracy
in detectable clusters was high (98.1%). Sensitivity and specificity were also high (98.8% and 98.1% respectively) though specificity
decreased for KCs with high underlying copy numbers (e.g., 81.4% for KCs with copy number 4 and 70.1% for KCs with copy number
5), potentially due to decreased accuracy in copy number estimates reported above and resulting spurious inter-sample variability.
Indeed the vast majority of KCs with high median copy number in the dataset analyzed in the main text were detected as variable by
our pipeline, and while most of them likely represent true instances of variation (note, for example, that 77.6% of the KCs with median
copy number > = 5 vary in copy number among the genomes included in our reference set), our confidence in detecting variability in
such KCs may be limited. Importantly, however, such KCs represent a very small fraction of the KCs in this dataset (e.g., only 0.56%
of KCs have median copy number > = 5). Yet, to confirm that such potentially spurious variable KCs do not affect our findings, we
repeated our analysis of variable KCs, filtering out all KCs with median copy number > = 5 (see Table S4). We found that this did not
qualitatively change the trends reported in the main text. Specifically, of the functional enrichments reported, 85% (91/107) still held
with this filtered set of variable genes (Table S6). Similarly, the results reported in the main text with regard to individual variable KCs
were not affected by this filtering. Finally, we examined whether our pipeline correctly classified KCs as highly versus set-specific
variable, plotting the recall of variable genes and their classification as a function of the percentage of simulated samples in which
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each KC was deleted or duplicated (Figure S4C). This analysis again demonstrated that our pipeline not only successfully recovered
the majority of variable KCs but was also able to distinguish between high frequency variation (KCs that vary in many samples) and
set-specific variation (KCs that vary in only a small subset of samples).

Analysis of Variable Functions in an Additional Sample Set from a Chinese Cohort

Our findings in the Spanish/Danish cohort suggest that genes associated with specific functions (and in specific species) may be
more prone to copy number variation than others. We therefore wished to examine whether the set of KCs and functional classes
detected in each species as variable are similar across different cohorts. To this end, we applied our mapping and analysis pipeline
to a second dataset of 73 gut microbiome samples from a Chinese cohort (obtained from (Qin et al., 2012)), and compared the de-
tected variation in this dataset to variation detected in our original Danish/Spanish cohort. Mapping parameters and variability detec-
tion schemes were identical to those used for the primary dataset. Examining the 73 samples with 75-bp reads from this cohort, we
identified 51 genome clusters present in at least one sample. 27 of these clusters were present in at least 10 samples in both datasets,
and were assayed for KC variation in the new sample set, yielding 6,898 highly or set-specific variable KCs (Table S4). Overall, of the
KCs detected as highly variable in the original dataset, 65% (350/538) were identified as highly variable also in the second dataset and
96% (515/538) were identified as either highly or set-specific variable in the second dataset. Of the KCs detected as set-specific var-
iable in the original dataset, 75% (2710/3591) were identified as either highly or set-specific variable in the second dataset. Within
each genome cluster, an over-representation analysis was performed to identify the functions associated with the set of variable
KCs in each cluster (Table S6), as described in the analysis of the primary dataset in the main text. Examining the overlap in detected
functional classes, 59% (44/74) of the associations reported in the main text for the 27 clusters examined were also found to be signif-
icantly associated with copy number variation in the second dataset and this overlap was higher (68%; 17/25) among transport-
related functions. Similarly, 67% (10/15) of the functions associated specifically with highly variable genes were also significantly
associated with highly variable genes in the second dataset. In certain clusters (ie. Bacteriodes ovatus and Roseburia inulinivorans),
functions found to be over-represented among variable KCs were almost identical in the two datasets. These findings suggest that
while the exact pattern of copy number variation may differ between different groups of individuals, certain genes and functions are
universally prone to variation.

Mapping Rates for Metagenomic Reads to Reference Genomes

We mapped a total of 2.47 billion 75bp reads to 260 reference genomes (Table S1). On average, 34.7% of the reads in each sample
could be mapped to a reference genome at an edit distance < 5, although in some samples the mapping rate was as high as 71.5%.
This average mapping rate is comparable to the one observed (31%) in mapping these reads to 194 gut-associated genomes in the
original study that generated these reads (Qin et al., 2010), as well as to mapping rates observed in similar studies (Qin et al., 2012;
Schloissnig et al., 2013). These rates are also not surprising given the complexity of gut-associated communities and the predicted
prevalence of rare and uncharacterized species. Of the mapped reads, an average of 82.6% overlapped a gene coding region (of
which over a third are annotated with a KO), which is in close agreement with the percentage of the total length of gene coding regions
within the genomes in our reference database.
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Figure S1. Validation of Reference Genome Clustering, Related to Figure 2

75 bp reads were simulated from 10 reference genomes, and then mapped back to a full or partial reference set using BWA (Extended Experimental Procedures).
Each column represents the proportion of reads simulated from a single genome that fell into various mapping categories. In (A) reads were simulated from 10
selected genomes, and mapped to the full set of 260 reference genomes. In (B) reads were subject to a 1.5% sequencing-error model before being mapped to the
reference genomes, and in (C) reads were subject to the error model and then mapped to a set of reference genomes in which the genome of origin was removed.
As demonstrated, reads mapped successfully to the genome of origin or to an alternative genome in the same cluster if present, while very few reads mapped to
the wrong cluster, supporting our cluster definitions. In (D) simulated mapping results as described in panel C were summed over all 260 genomes and analyzed at
arange of maximum edit distances. An edit distance of 5 maximized the number of correctly mapped (or correctly unmapped) reads while minimizing the number
of incorrectly mapped reads. The inset shows the most frequent assignments of incorrectly mapped reads for which the correct KC was present in the database
(gray squares: unannotated regions in the correct genome cluster; red squares: correct KO in the wrong genome cluster) or absent from the database (red circles:

correct KO in the wrong genome cluster).
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Figure S2. Genomes and KOs with High Mapping Error Rate, Related to Figure 2

75bp error-adjusted reads were mapped to a set of 260 reference genomes in which the genome of origin was removed (Extended Experimental Procedures; see
also Figure S1C). The percent of reads simulated from each genome (A) or from each KO (C) that were correctly or incorrectly mapped are shown as stacked bars
in each column. Genomes and KOs with a combined error rate (% incorrectly unmapped + % incorrectly mapped) > = 50% were excluded from further analysis.
The portions of panels A and C corresponding to these filtered genomes and KOs are magnified and shown in panels (B) and (D) respectively. Genome labels in
panel B are formatted as genomelD_clusteriD[cluster size] (and see Table S1).
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B
KO ID NAME BRITE class
K03043  DNA-directed RNA polymerase, beta DNK?S;‘;??;?Q ki
K02996 small subunit ribosomal protein S9 Ribosome
K02952 small subunit ribosomal protein S13 Ribosome
K02871 large subunit ribosomal protein L13 Ribosome
K06942 - -
K02982 small subunit ribosomal protein S3 Ribosome
K02933 large subunit ribosomal protein L6 Ribosome
K01887 arginy-RNA synthetase AQ‘:;"?S?::"R’,?"/?‘E%;;@’Q:S
K02986 small subunit ribosomal protein S4 Ribosome
K02863 large subunit ribosomal protein L1 Ribosome
K01873 valyHRNA synthetase A;":;‘%?%’ﬁf‘;‘éggﬁggi‘:s
K02994 small subunit ribosomal protein S8 Ribosome
K02876 large subunit ribosomal protein L15 Ribosome

(A) 13 marker KOs were selected from a list of 40 potential KOs according to three criteria: Universality > 0.95, Alignment Accuracy > 0.90, and Coverage
Consistency > 0.85 and < 1.15 (Extended Experimental Procedures). Selected marker KOs are outlined in black, and listed in (B).
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Figure S4. Analysis of Simulated Reads from Mock Communities, Related to Figure 3

(A) Predicted versus real relative abundances of genome clusters across a set of simulated communities (see Extended Experimental Procedures). Each point
represents a single genome cluster in a single sample, with different clusters represented by different colors. Across all sampled and clusters, the correlation
between predicted and real values was 0.993. (B) The estimated copy number of KCs as a function of the underlying real copy number and the coverage of the
genome cluster. Each boxplots illustrates the distribution of copy number estimates obtained for KCs with a certain real copy number and in clusters with a given
coverage range. Copy number estimation accuracy increased with coverage with an overall accuracy of 87.6%, 95.2%, and 97.8% for clusters with low coverage
(1x-2x), intermediate coverage (2x-5x), and high coverage (> 5x) respectively. Overall, copy number estimation accuracy for detectable clusters (> 1x) was 96%,
compared to only 60.1% for undetectable clusters. (C) Recall of variable KCs as a function of the fraction of samples in which the KC was deleted or duplicated.
The color of each circle represents the proportion of these detected variable KCs that were also identified as highly variable (compared to set-specific variable),
confirming the ability of our pipeline to classify the type of underlying variation.
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Figure S5. Comparison of Set-Specific Variable KCs to Known Variation among Reference Genomes, Related to Figure 4

(A) In each Venn diagram, the gray circle represents the set of all KCs in a given genome cluster, the pink circle represents the fraction of those KCs whose copy
number varies across the cluster’s reference genomes, and the red circle represents the set of set-specific variable KCs detected by our analysis. Overlap of the
pink and red circles indicates correspondence between known and detected variation. Each diagram is labeled with the cluster ID, representative species name,
and number of reference genomes. (B-C) Additional variation in reference genomes that were not used as mapping targets is represented by either an orange
circle (additional reference genomes from IMG) or a yellow circle (additional reference genomes from NCBI), compared to variation in included reference genomes
(pink) and detected set-specific variable KCs (red).
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Figure S6. Copy Number of Highly Variable Motility KCs in Eubacterium rectale, Related to Figure 5
The size and color of each square represent the copy number of each highly variable KC within each sample. Samples are grouped by host state (I: IBD, h: healthy,
o: obese). The copy number of the 13 marker KCs in this genome cluster and across the samples are also illustrated for comparison.
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Figure S7. Principal Coordinate Analysis of Copy-Number Profiles across Samples, Related to Figure 7
Principal coordinate plots are shown for two genome clusters: (A) Eubacterium siraeum and (B) Clostridium sp., depicting differences between the copy number
profiles across samples (open circles) and reference genomes (filled circles).
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